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Abstract. Dual Consistency (DC) was introduced by Lecoutre, Car-
don and Vion in [10, 11]. DC is a novel way of handling Path Consis-
tency (PC), with a simpler definition, and new efficient algorithms and
approximations. Interestingly, the new definition may be extended to
non-binary constraint networks (CNs). DC is thus a way to generalize
PC to any CN, while keeping the initial non-binary constraints of the
CN, and their associated propagators, untouched. DC can also be seen
as a simple and efficient way to generate automatically implicit binary
constraints. This article presents the implications of this generalization
in terms of complexity. Preliminary experimental results shows the po-
tential effectiveness of dynamic implicit constraints generation, as well
as identifying its weaknesses. Prospective ideas of approximations, whose
purpose is to handle these weaknesses in practice, are then proposed.

Consistencies are properties of Constraint Networks (CN) that can be used to
identify and prune, usually in polynomial time and space, values or instantiations
that cannot be part of the solutions of the Constraint Satisfaction Problem (CSP)
associated with the CN. They are essential in the process of solving a CSP and
one main reason of the success of Constraint Programming [8, 2].

The most useful consistency is (Generalized) Arc Consistency (GAC), which
is used to detect values that are inconsistent according to a given constraint.
Path Consistency (PC) is one of the oldest available consistencies. It is used to
identify inconsistent pairs of values. PC is defined on binary CNs, and usually
applied to complete binary constraint graphs [14]. Dual Consistency (DC) is a
simpler, alternative (equivalent) definition of PC. It was used in [10] to define a
new approximation of PC, called Conservative DC, and in [11] to introduce new
efficient algorithms to establish PC on complete binary CNs.

In this paper, we propose to extend the definition of (C)DC to non-binary
CNs. Interestingly, DC can be seen as an easy way to automatically deduce im-
plied binary constraints from the original domains and constraints of the CN. Im-
plied constraints are constraints that can be added to the CN without changing
the set of solutions, but that can be used to improve the propagation capability.



After a few definitions and notations, we describe properties of coarse-grained
GAC algorithms, and we present Dual Consistency. Then we discuss about apply-
ing Dual Consistency to non-binary networks featuring semantics-based prop-
agators. We propose sDCclone, an algorithm to enforce Dual Consistency on
general CNs by generating implied constraints “on the fly”, that fully exploits
the incrementality of underlying GAC algorithms to obtain a worst-case time
complexity in O(neid

3 +ndψ) (O(n(e+ ei)d3) in the case of binary CNs), which
is better than previously stated algorithms.1 sDC-2.1, an optimized and gener-
alized variant of sDC-2 is then proposed, and its worst-case time complexity is
thoroughly studied. Finally, we identify experimentally some drawbacks of DC
that can prevent its use on real-world problems. As a perspective of this work,
we propose possible approximations of DC to handle its identified weaknesses.

1 Background

1.1 CN and CSP

A constraint network (CN) P consists of a set X of n variables and a set C of e
constraints. A domain, associated to each variable X and denoted domP (X), is
a finite set of at most d values the variable can take in the CN P . When possible
without ambiguity, domP (X) will be simply denoted dom(X). The constraints
specify the allowed combinations of values for given subsets of variables. An
instantiation I is a set of variable/value couples, (X, v), denoted Xv, where v is
a value from a given universe U (∀X ∈X ,dom(X) ⊆ U). I is valid w.r.t. a CN
P iff for any variable X involved in I, v ∈ domP (X).

A relation R of arity less or equal to k is a set of instantiations.2 A constraint
C of arity r is a pair (scp(C), rel(C)), where scp(C) is a set of r variables and
rel(C) is a relation of arity r. Given a constraint C, an instantiation I of scp(C)
(or of a superset of scp(C), considering only the variables in scp(C)), satisfies
C iff I ∈ rel(C). We say that I is allowed by C. Controlling whether an instan-
tiation satisfies a constraint is called a constraint check (or check for short). An
instantiation I is locally consistent iff it is valid, and allowed by all constraints
of the CN (it does not falsify any constraint of P ). A solution of a CN P (X ,C )
is a locally consistent instantiation of all variables in X .

A CSP is the problem of deciding whether a solution to a given CN exists.
An instantiation is globally consistent iff it is a subset of at least one solution.
Instantiations that are not globally consistent are also called no-goods. Deter-
mining whether a locally consistent instantiation is a no-good is NP-complete
in the general case, but consistencies are used to identify some no-goods using
polynomial algorithms. Given a consistency Φ, it can be enforced on P using a “Φ-
consistency algorithm” whose purpose is to detect and remove all Φ-inconsistent
instantiations from P until a fix-point is reached (a closure of P by Φ is obtained).

1 ψ is the amortized complexity to enforce GAC on the CN incrementally, and ei is
the number of generated implied binary constraints.

2 k is the maximum arity of the constraints in a given CN.



Algorithm 1: GAC(P = (X ,C ), A )
P : the CN to filter
A : an initial set of arcs to revise
Q← A1

while Q 6= ∅ do2

pick (C,X) from Q3

if revise(C,X) then4

if dom(X) = ∅ then return ⊥5

Q← Q ∪mod({X},C )\(C,X)6

return P7

Most often, the fix-point is unique. The CN obtained from P by enforcing the
consistency Φ will be denoted Φ(P ).

1.2 Generalized Arc Consistency

Generalized Arc Consistency (GAC) is the most common and useful consistency.
It is a domain consistency [2], i.e. it identifies no-goods of size 1 (globally in-
consistent values). Consistencies that identify larger no-goods are usually called
relational consistencies, since they are used to remove allowed instantiations from
the relations of the constraints.

Definition 1 (Generalized Arc Consistency). Given a CN P = (X ,C ):

1. Xa | X ∈X and a ∈ dom(X) is GAC w.r.t. a constraint C ∈ C iff ∃I | Xa ∈
I ∧ I is valid and allowed by C. I is then called a support of a in C.

2. Xa is GAC iff ∀C ∈ C | X ∈ scp(C), Xa is GAC w.r.t. C.
3. P is GAC iff ∀X ∈X , ∀a ∈ dom(X), Xa is GAC.

Notation 1 The set {(C, Y ) | {X,Y } ⊆ scp(C) ∧ X ∈ X ∧ C ∈ C } of arcs
to be revised after the modification of the set of variables X or of the set of
constraints C will be denoted mod(X ,C ).

Algorithm 1 presents the main loop of coarse-grained GAC algorithms, i.e.
variants of GAC-3. The variants reside in the nature of the revise function
called on Line 4 of the algorithm. This version is arc-oriented: the propagation
queue contains all arcs that need to be revised. An arc is a pair (C,X) with
X ∈ scp(C). In any CN, O(ek) arcs can be devised. An arc (C,X) must be
revised if there is a possibility for X not to be AC w.r.t. C. If we have no clue on
the state of the CN, all the possible arcs must be inserted in the initial queue and
thus revised at least once. However, if we know that a single variable X has been
modified in a GAC CN, only arcs mod({X},C ) need to be inserted. Algorithm 1
can be initialized from a set of arcs A (Line 1). Using Notation 1, GAC can be
enforced on a given CN P = (X ,C ) by calling P ← GAC(P,mod(X ,C )).



The worst-case complexities of these algorithms rely on the fact that a given
arc (C,X) is inserted in the propagation queue Q only when one of the O(k)
variables of scp(C) is modified, and a variable can be modified only d times.
Thus, O(ek2d) calls to revise are performed in the worst case. The basic al-
gorithm for revise iterates over the Cartesian product of the domains of the
variables in scp(C) until it finds one support for each value of the domains, hence
a complexity in O(kdk) for revise (assuming a constraint check is in O(k)) and
O(ek3dk+1) for establishing GAC. The idea beneath GAC-2001 [5] is to make
the revise function incremental, so that the amortized complexity of all calls to
revise for a given constraint is in O(k2dk).3 Hence the complexity of GAC-2001
is in O(ek2dk). GAC-schema [4] reaches the O(ekdk) optimal complexity by mak-
ing use of fine-grained propagation queues and exploiting the multi-directionality
of the constraints. However, this requires many additional data structures, and
the obtained algorithms are not so much more efficient in practice. Other works
have stated that another suboptimal variants of GAC-3, such as GAC-3rm [12] or
GAC-watched [9] are most efficient in practice when maintained during search,
due to the presence of backtrack-stable data structures. Note that in the binary
case (k = 2), (G)AC-2001 has an optimal time complexity in O(ed2). Finally,
in the binary case, we can use highly optimized algorithms such as AC-3bit [13]
to make the computation of AC as fast as possible: the propagation of many
extensional binary constraints is thus reasonable.

All the GAC algorithms variants are incremental: once the fix-point is reached
for a given CN, the amortized worst-case complexity for multiple calls to the
algorithm, with at least one value removed between each call, is the same as the
complexity of a single call. In order to apply the GAC-3 algorithm incrementally,
one has to make sure that an arc will be revised if and only if a value has been
removed from the variable.

1.3 Propagators

The idea of propagators comes from the AC-5 propagation algorithm [19]. The
generic GAC algorithms described in the previous section are exponential in the
arity of the constraints, and are impractical when k grows. However, in practice,
GAC for non-binary constraints can often be computed in polynomial time by
exploiting the semantic properties of the constraints [1, 16]. AC-5 enables this
by abstracting the revise function, which can be specialized for each type of
constraint. These specialized revise functions are usually called propagators. In
this context, general GAC algorithms are most often used for constraints defined
in extension, i.e. an exhaustive list of forbidden instantiations,4 or for constraints
defined in intention and involving scalar operations.

Most works on generic solving of CSP have focused on the use of homogeneous
constraints, most often binary constraints in extension. In practice, real-world
3 The additional k factor is due to the fact that the multi-directionality of the relations

cannot be exploited and each possible instantiation may be checked up to k times.
4 In the case of a list of authorized instantiations, other algorithms such as Simple

Tabular Reduction [17] can apply.



problems involve heterogeneous constraints, associated with semantics-based,
efficient propagators. In this paper, we make no hypothesis with respect to the
initial network and algorithms used to enforce GAC. Any constraint with a
specific propagator is kept, and the semantic of the constraint is exploited.

In the following, we will denote by O(φ) the worst-case time complexity to
establish GAC on a given constraint network, O(ψ) the amortized worst-case
time complexity to establish GAC incrementally on the same CN, removing at
least one value between each propagation, and O(ρ) the global space complexity
of all propagators involved in the CN. On a general CN using GAC-schema as a
propagation scheme, O(φ) = O(ψ) = O(ekdk) and O(ρ) = O(nd+ ekd).

1.4 Dual Consistency

Dual Consistency (DC), introduced in [10], is an alternative (equivalent) defini-
tion of Path Consistency [14]:

Definition 2 (Dual Consistency). Given a CN P = (X ,C ), a binary in-
stantiation I = {Xa, Yb} is DC iff Xa ∈ AC(P |Y =b) ∧ Yb ∈ AC(P |X=a).

P is DC iff all locally consistent binary instantiations of P are DC.
P is strongly DC (sDC) iff it is both AC and DC.

The most efficient known algorithm to enforce Strong Dual Consistency is
sDC-2, described in [11]. Lecoutre et al. devised that establishing sDC with
this algorithm has a worst-case time complexity in O(n5d5), well above the best
complexity of PC algorithms, which is O(n3d3). However, the worst case of sDC-2
is very unlikely to appear and the algorithm is in practice faster than state-of-
the-art PC algorithms on most instances of CSP. Moreover, sDC-2 only uses a
very lightweight additional data structure (in O(n)).

2 Dual Consistency and non-binary networks: Algorithms
and Complexity Issues

Existing algorithms for PC require that the CN is a complete binary graph of
constraints supporting composition. However, the definition of DC leads to the
following remarks:

1. Simply by replacing AC with GAC in Definition 2, DC may be applied on
CNs of any arity.

2. DC algorithms do not have any assumption on the way (G)AC is established.
The algorithms thus can use all state-of-the-art propagators (for constraints
in extension or semantics-based) featured by the solver.

3. In order to establish sDC, one “only” needs to store binary no-goods (even if
the original CN contains non-binary constraints). This does not necessarily
involve the completion of the binary constraint graph (only in the worst
case).5

5 Note that this is also true for PC algorithms, but has not been experimented in
previous works as far as we know.



Algorithm 2: sDC-1(P = (X ,C ))
P ← GAC(P,mod(X ,C ))1

mark ← X ← first(X )2

repeat3

if |dom(X)| > 1 ∧ checkVar-1(P,X) then4

P ← GAC(P,mod({X},C ))5

if P = ⊥ then return ⊥6

mark ← X7

X ← next(X , X)8

until X = mark9

return P10

The latest proposition rises from a new point of view on DC (and PC): the
additional constraints that are introduced in order to enforce DC are constraints
that are implied by the original constraints of the problem. sDC allows us to
deduce these constraints purely semantically by executing the propagators of
the original constraints.

Three different algorithms, sDC-1, sDC-2 and sDC-3, dedicated to enforce
Dual Consistency on binary networks are proposed in [11]. We propose to extend
sDC-1 and sDC-2 in order to handle non-binary constraint networks (sDC-3 is
targeted towards binary CNs and has been experimentally showed not to be the
most efficient algorithm in practice). We try to benefit from the incrementality
of propagation algorithms to obtain a better high bound of time complexity. We
also get inspiration in the SAC-OPT algorithm [3]. sDC (and SAC) algorithms
rely on the idea of performing singleton tests: for each value Xv of a CN P , v is
assigned to X (dom(X) is reduced to the singleton {v}), and (G)AC is enforced
on the resulting CN, denoted P |X=v. SAC removes the value from the domain
of the variable iff an inconsistency is detected. DC goes further by translating
all information that can be deduced from the singleton test into binary no-goods
that are added to the CN by modifying and/or adding implied constraints. The
subset of added implied constraints will be denoted Ci (Ci ⊆ C ). All binary
extensional constraints from the original CN (or that can be safely converted to
extensional constraints) can be immediately put into Ci. We will denote ei = |Ci|.
We have ei ≤

(
n
2

)
∈ O(n2). According to the proof in [3] on the globality of

supports for SAC, if any modification is performed during a singleton test, all
singletons (involving a different variable) must be tested again.

2.1 sDC-1: the naive approach.

sDC-1, already described in [11], is the most “naive” algorithm for enforcing sDC.
Algorithms 2 and 3 depict sDC-1. The algorithm iterates over all values in the
domains of the variables. The mark and first/next functions in Algorithm 2
are used to iterate over all variables of the CN in turn, until all variables have
been checked by checkVar-1 without any change. next(X , X) considers X to



Algorithm 3: checkVar-1(P = (X ,C ), X)
modif ← false1

foreach a ∈ dom(X) do2

P ′ ← GAC(P |X=a,mod({X},C ))3

if P ′ = ⊥ then4

remove a from domP (X)5

modif ← true6

else7

foreach Y ∈ X \X do8

let C be s.t. C ∈ Ci ∧ scp(C) = {X,Y }9

foreach b ∈ domP (Y ) | b /∈ domP ′
(Y ) ∧ {Xa, Yb} ∈ rel(C) do10

remove {Xa, Yb} from rel(C)11

modif ← true12

return modif13

be ordered, and returns either the first variable right after X in X , or the first
variable of X (first(X )) iff X is the last element of X . Singleton tests are
performed in the main foreach do loop of checkVar-1 (Algorithm 3). The
second loop on Lines 8-12 stores the no-goods that can be deduced from the
enforcement of GAC on Line 3. On Line 9, the constraint is created “on the fly”
iff it does not exist. Created constraints are initially universal constraints that
allow all instantiations of the variables.

Proposition 1. Applied on a general CN, sDC-1 has a worst-case time com-
plexity in O(ne2i d

5 + neid
3φ) and a space complexity in O(eid

2 + ρ).

Proof (Sketch). O(nd) singletons must be tested, and if any singleton test leads
to a modification, all singletons must be checked again [3]. The smallest change
that can occur is the removal of a binary no-good from an implied constraint.
There can be O(eid

2) such changes. One singleton test consists in:

1. Establishing GAC in O(eid
2 + φ) on the CN (Line 3 of Algorithm 3). The

O(eid
2) term corresponds to the propagation of the ei additional implied

binary constraints using some optimal AC algorithm.
2. Finding changes in the CN in O(nd) and removing the corresponding no-

goods from the implied constraints (Lines 8-12 of Algorithm 3). This point is
incremental if the deltas of the domains after a propagation can be obtained
(as suggested by the AC-5 propagation scheme) and is amortized to a total
in O(eid

2), that can be safely discarded.

The only data structures sDC-1 uses are for storing the no-goods in exten-
sional binary constraints, which is in O(eid

2). The data structures of the optimal
AC algorithms that are used to propagate these constraints are in O(eid) and
can be discarded. ut



Fig. 1. Illustrating the incrementality of GAC over singleton tests

Experimental results in [11] state that despite its simplicity and high theo-
retical worst-case complexity, this algorithm has a very good practical behavior,
often better than state-of-the-art PC algorithms.

2.2 sDCclone: enforcing sDC in O(neid
3 + ndψ).

This complexity for enforcing DC is obtained by exploiting the full strength
of the incrementality of (G)AC algorithms. As illustrated by Figure 1, if some
no-goods are deducted for the singleton test Y = d, the previous singleton test
X = a should not be recomputed from scratch, but restarted incrementally from
the latest fix-point obtained for X = a. The idea for sDCclone, borrowed to the
SAC-OPT algorithm, is to achieve this by creating a physical copy of the CN in
memory for each one of the O(nd) possible singleton tests. In order to benefit
from the incrementality of propagation algorithms, all the data structures of
these algorithms must be duplicated as well.

Finally, one should note that the implied constraints must be propagated ev-
ery time a constraint is modified (and not only when a value is removed from the
domain of a variable). Looking at Algorithm 1, it means that each arc implying
an implicit constraint can be added O(d2) times, hence O(eid

2) calls to revise
may be made. Even though the revise procedure for AC-2001 is incremental,
it requires at least O(d) operations to validate the current supports. Thus, AC-
2001’s complexity falls to O(eid

3) and cannot be used to obtain the optimal
incremental complexity for propagating the implied constraints, and one should
rely on a fine-grained algorithm such as AC-4, AC-6 or AC-7.

Proposition 2. Applied on a general CN, sDCclone has a worst-case time com-
plexity in O(eind

3 + ndψ) and a space complexity in O(eind
2 + ndρ).

Proof (Sketch). The worst-case time complexity is obtained by considering the
full incrementality of GAC algorithms for each of the O(nd) singleton tests,
assuming an O(ψ) amortized complexity for enforcing GAC incrementally on the
CN, and O(eid

2) for enforcing AC on the implied constraints, using an optimal,
fine-grained AC algorithm.

The CN must be cloned O(nd) times. However, the list of no-goods (i.e. the
relations of the implied constraints) can be shared between all clones. Only the
data structures of the optimal AC algorithm (in O(eid)) are cloned. ut



Algorithm 4: sDC-2.1(P = (X ,C ), Ci)
P ← GAC(P,mod(X ,C ))1

mark ← X ← first(X )2

repeat3

if |dom(X)| > 1 ∧ checkVar-2.1(P,Ci, X) then4

P ′ ← GAC(P, {arcQueue[i] | firstArcMain ≤ i < cnt})5

if P ′ = ⊥ then return ⊥6

foreach (Y, b) | Y ∈ X ∧ b ∈ domP (Y ) ∧ b /∈ domP ′
(Y ) do7

remove b from domP (Y )8

foreach (C,Z) ∈ mod({Y },C ) do arcQueue[cnt++]← (C,Z)9

firstArcMain← cnt10

mark ← X11

X ← next(X , X)12

until X = mark13

return P14

For example, on a CN consisting only in all-different constraints (O(ψ) =
O(ek2d2) and O(ρ) = O(ekd) [16]), sDC can be enforced using this algorithm
in O(eind

3 + enk2d3) with an O(eind
2 + enkd2) space complexity. In the binary

case, sDCclone reaches a worst-case time complexity in O(n(e + ei)d3), which
is less than previously stated PC algorithms.Still, the space requirements are
excessive for practical use. Moreover, Debruyne & Bessière state in [3] that the
results of the experimentations conducted with the SAC-OPT algorithm, which
rely on the same principle, were quite disappointing. This algorithm is thus not
further described nor experimented in this article.

2.3 sDC-2.1: a compromise.

“Restoring the state of the CN”, which is essential in catching the enhanced
complexities of sDCclone/SAC-OPT, can be done in a very natural way, without
any additional data structure, when establishing DC. The information recorded
in constraints during the previous test of the same singleton can be exploited to
restore the domains of the variables to the state they were at the end of the pre-
vious test. This can be performed by calling the revise function of implied con-
straints that involve the current singleton Xa: foreach (C, Y ) ∈ mod({X},Ci)
do revise(C, Y ). This process is related to Forward Checking and has a worst-
case time complexity in O(nd), as there may be at most n binary constraints
involving a given variable, and the call to revise on a binary constraint whose
one variable is a singleton is in O(d).

This observation was already partly used to design the sDC-2 algorithm.
We present here sDC-2.1, an optimized and extended version of the sDC-2 al-
gorithm that handles non-binary constraints specifically. It is described on Al-
gorithms 4 and 5. The lastModified data structure of sDC-2 is replaced by a
new arcQueue data structure and O(nd) pointers (one for each singleton Xa)



Algorithm 5: checkVar-2.1(P = (X ,C ), Ci, X)
modif ← false1

foreach a ∈ dom(X) do2

if cnt ≤ |X | then3

/* First turn */

P ′ ← GAC(P |X=a,mod({X},C ))4

else5

/* Consequent turns: forward checking */

P ′ ← P |X=a6

foreach (C′, Y ′) ∈ mod({X ′},C ′
i ) do revise(C′, Y ′)7

/* Propagation with pre-initialized propagation queue */

P ′ ← GAC(P ′, {arcQueue[i] | firstArc[Xa] ≤ i < cnt}))8

if P ′ = ⊥ then9

remove a from domP (X)10

foreach (C,X) ∈ mod({X},C ) do arcQueue[cnt+ +]← (C,X)11

modif ← true12

else13

foreach Y | {X,Y } ⊆ X do14

let C be s.t. C ∈ Ci ∧ scp(C) = {X,Y }15

foreach b ∈ domP (Y ) | b /∈ domP ′
(Y ) ∧ {Xa, Yb} ∈ rel(C) do16

remove {Xa, Yb} from rel(C)17

arcQueue[cnt+ +]← (C,X) ; arcQueue[cnt+ +]← (C, Y )18

modif ← true19

firstArc[Xa]← cnt20

return modif21

denoted firstArc[Xa]. This data structure works as follows: arcQueue holds all
arcs that must be revised in all singletons tests. An arc is inserted at the end
of the queue whenever a neighbor variable or constraint is modified. Every time
an arc is revised for the singleton test Xa, firstArc[Xa] is moved to the next
element in arcQueue. When GAC is called, the revision queue is initialized with
all arcs of arcQueue starting from firstArc[Xa]. This mechanism ensures that
adding an arc to the propagation queue of all singletons is done in constant time,
and that the initializations of the revision queues are incremental.

These data structures are used on Line 5 of Algorithm 4 and Line 8 of Al-
gorithm 5 to initialize the propagation queue of the underlying propagation
algorithm, so as to make sure that only the propagators that are likely to make
some inference will be called (i.e. a variable involved by the constraint or the
constraint itself has been modified since the last occurrence of the singleton test).
X ′, Y ′, C ′ and C ′

i are the variables, constraint or set of constraints in P ′ that
respectively correspond to X, Y , C and Ci in P .

Proposition 3. Applied on a general CN, sDC-2.1 has a worst-case time com-
plexity in O(e2i d

4 +eind
5 +nkd2φ) and a space complexity in O(eid

2 +ek2d+ρ).



Proof (Sketch). In this variant of the algorithm, a singleton test consists in:

1. The restoration of the state of the CN at the end of the previous singleton
test of the same (Variable, Value) pair, in O(nd) by using Forward Checking.
The Forward Checking over all singletons is amortized to O(eid

2), and this is
performed O(eid

2) times in the worst case (as this is the number of possible
modifications), hence a first term in O(e2i d

4).
2. Initializing the propagation queue of GAC. In the worst case, each one of

the O(ei + ek) arcs is handled once for each possible modification in each
singleton test (O(d2) for the arcs implying the implied constraints and O(kd)
for the others), hence an amortized complexity in O(nd.(eid

2 + ek2d)).
3. The propagation of the singleton assignment or of the updates. Since the

data structures are not cloned, the incrementality of the propagators is lost
and falls back to O(eid

2 +φ). We know that a given propagator can be called
only O(kd) times on a given singleton (resp. O(d2) for implied constraints),
when a value (resp. a no-good) is removed. Thus, for each of the O(nd)
singletons, the amortized complexity for all propagations of a singleton test
is in O(eid

4 + kdφ).
4. If an inconsistency is detected, removing the value and updating the arcQueue

data structure (Line 11 of Algorithm 5). Detecting an inconsistency on
Line 9 can only occur O(nd) times and requires O(n) operations to up-
date arcQueue, which are amortized to a total of O(eid+ ed). This part can
be safely discarded in the final complexity, assuming e ≤ φ.

5. Else, updating the implied constraints and arcQueue. As for sDC-1, this is
incremental if deltas are exploited and can be discarded.

For the space complexity: the relations of the implied constraints are in
O(eid

2). The O(ei) arcs corresponding to the implied constraint can be added
O(d2) times in the revision queue, and the O(ek) arcs corresponding to the ini-
tial constraints can be added O(kd) times. The arcQueue data structure has
thus a space complexity in O(eid

2 + ek2d) and the firstArc pointers in O(nd).
This last term can be discarded as we can safely assume that ρ > nd. ut

Note that applying this algorithm on a complete binary network (O(φ) =
O(n2d2) and O(ei) = O(n2)) results in a worst-case complexity in O(n4d4 +
n3d5), which is better than sDC-2 (in O(n5d5)). If we have for example an
initial CN composed exclusively of all-different constraints (e.g. for modelling
Latin Square problems), which can be propagated in O(k1.5d2) [16], sDC can be
computed in O(e2i d

4 + eind
5 + enk2.5d4).

Implementation notes. In practice, the arcQueue data structure can be safely
replaced by two integer tables lastModV ar and lastModCons, closer to the
original sDC-2 algorithm. Their management is not incremental and add a theo-
retical O(n4d3 +ein

3d3) term to the worst-case complexity of the algorithm, due
to the initialization process of the propagation queues. However, the space com-
plexity is smaller (O(n+ei) instead of O(nd+eid

2+ekd)), and their management
is faster in practice (as it naturally regroups revisions on the same arcs).
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Fig. 2. Preprocessing on random instances of various tightnesses. CPU times are in
seconds. Characteristics of the problems are given as a quadruple (n, d, e, k).

The arc-oriented GAC algorithm presented on Algorithm 1 is emulated by an
enhanced variable-oriented version, using revision ordering heuristics and special
counters to avoid useless revisions, as described in [6, 7].

3 Experiments

Experiments are performed on benchmarks from the Third International Solver
Competition [18], featuring either binary or non-binary CN involving either con-
straints in intention, extension or with semantics-based propagators. We used
the Concrete solver, built on the CSP4J library [20].

Figure 2 gives an idea of the enhanced performance of sDC-2.1 w.r.t. sDC-
1 and sDC-2, even on binary problems. sDC is enforced on binary (leftmost
graph) and non-binary (rightmost graph) random problem instances with each
algorithm. The difference between the algorithms only appears near the thresh-
old, where singletons must be processed multiple times to reach the fix-point.

Two strategies are compared: problems are solved using standard MGAC-
dom/wdeg after a phase of preprocessing where GAC or DC are respectively
established. The data structures and propagation algorithms used to propagate
the binary extensional constraints are those of AC-3bit or AC-3bit+rm [13].

Table 1 shows representative results where applying sDC has a positive im-
pact on search. sDC is mostly efficient on very hard instances, where the reduced
number of explored nodes can compensate the time taken during the preprocess-
ing and propagating the additional constraints during search (this is estimated by
the nodes per second metric). The selected problems are all structured problems,
with various constraints. taillard instances are scheduling instances, modelled
with disjunctive inequality constraints with a specific incremental linear-time
propagator. tsp is a Travelling Salesman Problem and series is an All-Interval-
Series problem with ternary positive table constraints propagated with STR
algorithm [17]. scen11-f1 is the hardest available RLFAP instance, and uses only
binary constraints propagated with AC-3bit. These binary instances demonstrate
that on real-world problems, completing the constraint graph is not mandatory
to enforce PC (scen11-f1 uses 680 variables and completing the graph would
require more than 230,000 constraints).



GAC sDC
tsp-25-715
(76, 1 001, 350, 3)

prepro
cpu 0 353

add cstr 0 2,303

search
cpu 497 23

nodes 397k 2k
nodes/s 798 96

total cpu 497 376

series-15
(29, 15, 210, 3)

prepro
cpu 0 1

add cstr 0 182

search
cpu 475 238

nodes 6,920 k 1,890 k
nodes/s 15,142 7,908

total cpu 475 239

GAC sDC

scen11-f1
(680, 42, 4 103, 2)

0 41
0 757

9,646 9,408
6,749 k 4,335 k

700 461

9,646 9,448

os-taillard-7-100-0
(49, 434, 294, 2)

0 27
0 294

> 600 104
> 2,790 k 148 k

4,650 1,423

> 600 131

Table 1. Comparing search performance with and without sDC preprocessing. Positive
representative instances.

GAC sDC
os-taillard-7-95-7
(49, 403, 294, 2)

prepro
cpu 0 25

add cstr 0 303

search
cpu 675 1,654

assgn 2 749 k 1,698 k
nodes/s 4 073 1,026

total cpu 675 1,679

GAC sDC

os-gp-10-10-1092
(101, 1 090, 1 000, 2)

0 > 275
0 > 1,020

> 2,400 –
> 864 k –

360 –

> 2 400 –

GAC sDC

graceful-K5-P2
(35, 26, 370, 3)

0 5
0 200

157 246
985 k 993 k
6,280 4,040

157 251

Table 2. Negative representative instances.

There are many cases where the new constraints interfere with the variable
ordering heuristics: indeed, the best generic variable ordering heuristics such as
dom/wdeg rely on the structure of the CN to select the variables to assign. The
tsp-25-715 instance is spectacularly influenced by this phenomenon.

Table 2 shows examples of instances for which applying sDC is counter-
productive. Three main drawbacks are identified, and a representative instance
was chosen in each case: in the case of os-taillard-7-95-7, the reduced number
of nodes does not compensate the time lost propagating the new constraints. In
the case of os-gp-10-10, a very large number of implied constraints is generated
(up to 5000), and the size of the instance just too high for these constraints to
fit in memory (with a 600 MiB memory limit). Finally, in the case of graceful
instances, dom/wdeg is actually misguided by the new constraints. In our ex-
perience, degraded cases are rare, and search strategies specific to the problems
would of course not be affected.



GAC sDC/RC
os-gp-10-10-1092

prepro
cpu 799

add cstr 851

search
cpu 599

nodes 321k
nodes/s 536

total cpu 1,398

Table 3. Solving a problem by generating implied row-convex constraints

4 Perspectives

The main usefulness of Dual Consistency is to automatically improve the ro-
bustness of the solver in front of poorly modelled problems. Indeed, some of the
implied constraints introduced by DC could have been manually inserted dur-
ing the modelling phase, with an appropriate propagation algorithm and lighter
data structures.

However, since the constraints added by Dual Consistency are implied con-
straints, they can be naturally processed and relaxed without adding solutions
to the CSP. The Conservative DC proposed in [10] is already a successful exam-
ple of such an approximation, where no-goods that cannot be stored in one of
the original constraints of the problem are discarded. As a perspective, we can
propose to extend our work in these directions:

– Relax implied constraints such that they confer to some property, e.g. row
convexity. Table 3 gives an example of a hard problem solved by using an
approximated form DC to generate row-convex constraints (no-goods that
violate the row-convexity property are discarded). Full DC could not be
applied on the same problem (see Table 2).

– Propagate the implied constraint only when they prove to be useful. In par-
ticular, we can apply works such as [15] without having to detect the redun-
dant constraints.

5 Conclusion

In this paper, we proposed an extension of the definition of Dual Consistency,
and thus Path Consistency, to non-binary constraint networks. We showed how
DC can be used a way to automatically deduce implied binary constraints from
the original domains and constraints of the constraint network. A new variant
of the Strong Dual Consistency algorithm, called sDCclone, with an enhanced
worst-case time complexity, and specific handling of non-binary constraints was
described. An efficient compromise, called sDC-2.1, was proposed. Experiments
on the new algorithm with “on the fly” generation of implied binary constraints
were described, and showed that this approach is promising.



Finally, the main drawbacks of Dual Consistency, that can prevent its use
on real-world problems, were identified. New open ideas were proposed to bring
solutions to these drawbacks.
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