
Handling Heterogeneous Constraints in Revision
Ordering Heuristics

Julien Vion and Sylvain Piechowiak

Université de Valenciennes et du Hainaut Cambrésis,
LAMIH CNRS FRE 3304,

59313 Valenciennes Cedex 9, France.
{julien.vion|sylvain.piechowiak}@univ-valenciennes.fr

Abstract. Most constraint solvers use the general AC-5 scheme [17] to
handle constraint propagation. AC-5 generalizes the concept of constraint
revision. Each constraint type can thus be shipped with its own revision
algorithm, with various complexities and performances.
Previous papers showed that the order in which constraints are revised
have a non-negligible impact on performances of propagation [20,6,1].
However, most of the ideas presented on these papers are based on the use
of homogeneous propagators for binary constraints defined in extension.
This paper give ideas to handle heterogeneous constraints in a general
revision schedule.

1 Introduction

The constraint satisfaction problem (CSP) consists in deciding whether a so-
lution to a discrete constraint network (CN) exists. A CN consists in a set of
discrete variables and constraints. Each constraint has one or more variables in
its scope, and defines which instantiations of these variables are allowed. A solu-
tion to the CN is an instantiation of all variables which satisfies all constraints.
The CSP is a standard NP-complete problem and generalizes very naturally
many real-life industrial problems such as scheduling, rostering, etc.

Standard techniques for solving CSP instances use interleaved decision, prop-
agation and backtrack steps. Most often, the propagation phase consists in es-
tablishing arc consistency by pruning all values that are inconsistent (i.e. cannot
appear in any solution of the CSP according to the current decisions) from the
point of view of a single given constraint. The resulting search algorithm is called
MAC (see Page 2). The AC function performs the propagation step (see below),
and returns false if the CN is inconsistent (e.g., one variable domain is empty).
N = > means that the CN is trivially consistent (e.g., there are no constraints,
or all variable domains are singletons). In the given algorithm, δ should not be
trivially implied by N , and the final disjunction has a short-circuit behavior.
This algorithm is of course very schematic. In particular, users are often inter-
ested in obtaining a solution, not simply knowing that one exists. Obtaining a
consistent solution from the given algorithm is trivial. The nature of the decisions
δ is a major issue in Constraint Programming. Standard all-purpose algorithms

Function MAC(N): boolean
1 N ′ ← N ;
2 if ¬AC(N ′) then return false;
3 if N ′ = > then return true;
4 Let δ be some logical decision;
5 return MAC(N ′|δ) ∨ MAC(N ′|¬δ);

usually make variable assignements (reduce the domain of a chosen variable to a
singleton). The choice of the variable is important. Common decision heuristics
are the dom/ddeg or dom/wdeg variable assignment ordering heuristics [5].

Removing values that are inconsistent w.r.t. a given constraint is called a
constraint revision and propagation algorithms are designed to perform such re-
visions until some fix-point is reached. As constraint revisions are NP-hard in
the general case (i.e. without any clue on the semantics of the constraint), for a
long time, CSP were limited so as only to involve binary constraints (two vari-
ables per constraint). The binary CSP is NP-complete, but AC can be enforced
on any binary CN in polynomial space and time.

Dozens of algorithms have been proposed during the last 40 years for per-
forming the propagation step: AC-1 to AC-8, numerous variants of AC-3, etc.
Most of these algorithms are actually the combination of a propagation and a
general constraint revision algorithms (either NP-hard or limited to binary con-
straints). However, two propagation algorithms, AC-5 [17] and GAC-schema [3],
consider a generic revision process, and thus generalize most other algorithms.
In particular, AC-5 opened enormous perspectives to constraint programming.
The main idea of AC-5 is that each constraint in the CN has semantic proper-
ties, that can be exploited by a specific (often polynomial) algorithm to perform
the constraint revision. Thus, CSP solvers provide a “toolbox” of known useful
constraints (less than, not equal, sum, all different. . .), each of which is shipped
with its own propagator. This scheme gave birth to global constraints [2], which
permitted to reuse powerful graph theory, artificial intelligence or operational
research algorithms for performing constraint revision, and are now of primary
importance to handle industrial-class problems. Most modern constraint solvers
are based on AC-5.

AC-5, as all AC algorithms since AC-3 [12], are based on a propagation queue.
When a variable loses a value, constraints involving this variable may no longer
be AC, and requires to propagate the removed value to other variables. The
propagation queue is used to keep track of such modifications, from which the
propagation algorithms deduce which constraint revisions must be performed.
The nature of the data stored in the queue (values, constraints and/or variables),
as well as the order in which the different constraint revisions are processed,
have a significant impact on the performance of the propagation. Works have
been dedicated to devise a “good” ordering of the revisions [20,6,1], but they
are usually focused on binary CSP with general propagators. Applying these
techniques to heterogeneous propagators may lead to trivial pathological cases.

Note: in this paper, we distinguish generic from general concepts. A generic
scheme can be specialized to the most efficient technique for the sought problem.
A general algorithm works on any problem without specialization.

The contributions of this paper are :

1. establish a clear state-of-the-art on coarse-grained, generic propagation al-
gorithms (Section 3),

2. define a generic, constraint-based revision ordering heuristic (Section 4.2),
3. survey data structures proposed in the algorithmic literature and show exper-

imentally how they can improve the performance of propagation algorithms
(Section 4.3).

2 Background

Definition 1 (Constraint Network, Variable, Domain, Constraint, In-
stantiation). A Constraint Network N is a pair (X ,C) which consists of :

– a set of n variables X ; a domain dom(X) is attached to each variable X ∈
X and denotes the finite set of at most d values that the variable X can be
instantiated to, and

– a set of e constraints C ; each constraint C ∈ C involves at most k variables
vars(C) ⊆ X ; the constraint specifies the allowed instantiations for these
variables.

The set of constraints with a given variable X in scope is denoted ctr(X).
A constraint can be defined in extension (i.e., an exhaustive list of allowed

or forbidden instantiations), or in intention (i.e., using some application fC :∏
X∈vars(C) dom(X) → B). Global constraints define some property of arbitrary

arity that the values of the variables in its scope must verify (e.g., all different).
The Constraint Satisfaction Problem (CSP) consists in deciding whether a

solution to a CN (i.e., an instantiation of all variables satisfying all constraints
of the CN) exists. A constraint check consists in testing whether a constraint
allows a given instantiation of variables. When all constraints can be checked in
polynomial space and time, the CSP is NP-complete.

Definition 2 (Arc consistency). Let C be a constraint and X ∈ vars(C).
Value v ∈ dom(X) is Arc-Consistent (AC) w.r.t. C iff there exists an instantia-
tion of vars(C), allowed by C, which instantiates X to v (such an instantiation
is called a support of v w.r.t. C). C is AC iff ∀X ∈ vars(C), ∀v ∈ dom(X), v
is AC.
N = (X ,C) is AC iff ∀C ∈ C , C is AC.

In the literature, the definition of Arc Consistency is often restricted to binary
CNs, and the extension of AC to non-binary CNs is called Generalized AC,
Hyper-AC, or Domain Consistency. In this paper we refer to Arc Consistency
for both binary and non-binary CNs.

Definition 3 (Closure). Let N = (X ,C) be a constraint network. AC(N , C)
is the closure of N for AC on C, i.e. the CN obtained from N where ∀X ∈
vars(C), all values v ∈ dom(X) that are not AC w.r.t. C have been removed.

AC(N) is the closure of N for AC, i.e. the CN obtained from N where
∀C ∈ C , C have been made AC by closure.

For any CN N (X ,C), AC(N , C) for any C ∈ C and AC(N) are unique. In
the general case, computing the closure for AC on a CN is NP-hard. Optimal
algorithms such as GAC-schema are in O(ekdk) [3].

Definition 4 (Propagator). Given a CN N = (X ,C), the propagator for a
given constraint C ∈ C is the algorithm that computes AC(N , C).

3 A generic, coarse-grained propagation algorithm

This section does not intend to bring out innovative propagation algorithms,
but instead aims to establish a clear state-of-the-art of coarse-grained, generic
propagation techniques.

The main difference between AC algorithms lies in the way the general con-
straint propagator works. However, independently of the general propagator,
these algorithms are often sorted in two families, depending on the nature of
the data stored into the propagation queue. So-called fine-grained algorithms
store every single value that have been removed from the domain of the differ-
ent variables in the propagation queue, and try to exploit this information to
avoid unecessary work. Coarse-grained algorithms only store the variable where
a value have been removed, and/or constraints involving them, that thus must
be revised. Although using fine-grained propagation queues is essential in de-
signing optimal algorithms, the theoretical difference is at best marginal (the
coarse-grained GAC-2001 algorithm is in O(ek2dk) [4]), and the simpler data
structures used by coarse-grained algorithms usually make them as much effi-
cient in practice.

Mackworth’s original AC-3 algorithm [12] was arc-oriented, that is, the prop-
agation queue was composed of (Variable,Constraint) pairs. The Variable part
of the pair identifies a variable which is not guaranteed to be AC w.r.t. the
Constraint. McGregor showed in [13] that a similar behavior could be obtained
by simply storing the modified variables in the queue. However, when working
with non-binary constraints, variable-oriented propagation is not informative
enough to avoid all useless revisions: when two variables involving the same
non-binary constraint are in the queue, the domain of each variable involved by
the constraint should be controlled for arc-consistency only once.

Boussemart et al. proposed in [6] to introduce an auxiliary data structure we
call modified[C] to emulate the benefits of an arc-oriented propagation scheme
in a variable-oriented propagation algorithm. It is used to keep track of which
variables have been actually modified since the last revision of a constraint.
Interestingly enough, this auxiliary data structure can also be used to devise
a purely constraint-oriented propagation algorithm which avoids these useless

Algorithm 1: AC-5v(N = (X ,C)) : CN
1 Q← X ;
2 foreach C ∈ C do modified[C]← vars(C);
3 while Q 6= ∅ do
4 Pick X from Q;
5 foreach C ∈ ctr(X) s.t. modified[C] 6= ∅ do
6 ∆← C.revise(modified[C]) ;
7 if ∆ = ⊥ then return false ;
8 Q← Q ∪∆;
9 modified[C]← ∅;

10 foreach Y ∈ ∆ do
11 foreach C′ ∈ ctr(Y)\C do
12 modified[C′]← modified[C′] ∪ {Y };

13 return true;

revisions. The version presented here is slightly optimized (with O(k) overhead
in Algorithm 3 against O(k2) in the original version).

The original AC-5 algorithm was fine-grained, so we propose our coarse-
grained variants.

3.1 Variable-oriented propagation

In AC-5v (Algorithm 1), the propagation queue Q contains recently modified
variables, which require the revision of the constraints involving them (loop
starting on Line 5). Initially, all variables are put in Q, however, when using the
MAC procedure, only variables involved by the decisions δ are concerned.

The call to C.revise(modified[C]) on Line 6 calls C’s propagator, which
may remove values from vars(C). The propagator returns a set ∆ ⊆ vars(C) of
modified variables,1 or ⊥ if an inconsistency has been detected (e.g., the domain
of a variable has been emptied).

3.2 Constraint-oriented propagation

In this variant, called AC-5c (Algorithm 2), constraints yet to be revised are
stored in the queue. This leads to a somewhat simpler algorithm and finer queue,
but the modified data structure is even more important to avoid unecessary work:
when a constraint C is put in the queue due to some removals in the domain of
a variable X involved by C, C’s propagator only needs to control the domains
of the other variables for arc consistency.

Algorithm 2: AC-5c(N = (X ,C)) : CN
1 Q← C ;
2 foreach C ∈ C do modified[C]← vars(C);
3 while Q 6= ∅ do
4 Pick C from Q;
5 ∆← C.revise(modified[C]) ;
6 if ∆ = ⊥ then return false ;
7 modified[C]← ∅;
8 foreach Y ∈ ∆ do
9 foreach C′ ∈ ctr(Y)\C do

10 Q← Q ∪ {C′};
11 modified[C′]← modified[C′] ∪ {Y };

12 return true;

Algorithm 3: reviserm(modified: {Variable}): {Variable}
1 ∆← ∅;
2 foreach X ∈ vars(this) s.t. modified 6= {X} do
3 foreach v ∈ dom(X) s.t. this.res[X][v] is not valid do
4 τ ← this.findSupport(X, v) ;
5 if τ = ⊥ then
6 remove v from dom(X);
7 if dom(X) = ∅ then return ⊥;
8 ∆← ∆ ∪ {X};
9 else

10 foreach Y ∈ vars(this) do this.res[Y][τ [Y]]← τ ;

11 return ∆;

3.3 The AC-3rm propagator

To illustrate the use of our AC-5v/AC-5c scheme, we give a sample general propa-
gator, called reviserm, extracted from the AC-3rm algorithm [9] and extended to
handle non-binary constraints (Algorithm 3). this denotes the current constraint.
τ is a tuple containing a value, denoted τ [X], for every variable X ∈ vars(C). τ
is said to be valid iff ∀X ∈ vars(C), τ [X] ∈ dom(X). The findSupport method
seeks for an allowed, valid tuple supporting the given value for the current con-
straint, and returns ⊥ if no such tuple can be found. If a support is found, it is
recorded as a residue [11], exploiting the multidirectionality of the constraints.
A most interesting feature of residues is that they are stable on backtrack, that
is, when using the MAC procedure, residues that are found at some point of the
search tree will also be valid after a backtrack. No update of the data structures
is thus necessary upon backtracking.
1 Many solvers use events to avoid the management of ∆ sets.

reviserm may be considered as the state-of-the-art algorithm to propagate,
within MAC and using coarse-grained propagation queues, constraints defined in
extension.2 It can be used as a “fallback” propagator when no better algorithm
exists or is implemented yet. Many efficient propagators may also be built on
this algorithm, simply by specializing the findSupport method: although the
standard behavior consists in iterating over all the O(dk−1) valid tuples, checking
the constraint (in O(k)) until an allowed tuple is found, better methods may be
devised when working with known constraints. For example, with the X = Y +Z
constraint, a support for a value x ∈ dom(X) can be found in O(d): the algorithm
iterates over the values y ∈ dom(Y), and checks whether the value z = x− y ∈
dom(Z).

4 Managing the propagation queue

Note: In this paper, all heuristics and sorting algorithms are min-based (mini-
mum value first). Of course, it is perfectly feasible to reverse all comparisons to
obtain max-based heuristics and sortings, without any impact on the algorithms
and complexities.

4.1 Related work on ordering heuristics

The order in which the constraints are revised has an important impact on the
performance of the propagation, and several works have been devoted to devise
a good heuristic to know which constraint to propagate first. The original work
is by Wallace & Freuder [20]. In their work, they study the impact of various
ordering heuristics in an arc-oriented AC-3 propagation algorithm, restricted to
binary CSPs. The heuristics devised by Wallace & Freuder follow this principle:
for an efficient propagation, values should be filtered as soon as possible, so most
constraining constraints should be propagated first.

Of course, it is very difficult to predict how strong a constraint is beforehand.
Wallace & Freuder use the tightness (proportion of instantiations forbidden by
the constraint) as an heuristic to estimate the strength of the constraint, which is
reasonable when working on small binary CSP. However, computing the tightness
of a general constraint is #P -hard. Proposed less time-consuming alternatives
consider the domain size (we call this the dom heuristic) or the degree of the
variable in the arc. Note that even when working on tiny binary CSP, Wallace
& Freuder’s best results were obtained by applying an heuristic before the first
propagation (using a pigeonhole sort algorithm), and rely on simple queues or
stacks afterwards. An interesting alternative, proposed by Balafoutis & Stergiou
in [1], is to exploit the constraint weights obtained from the dom/wdeg variable
assignment heuristic [5] to devise the most interesting constraints. Moreover,
this strategy seems to interact positively with the variable assignment heuristic.
Both Wallace & Freuder and Balafoutis & Stergiou works are primarily oriented
towards binary CSPs, using plain AC-3 for propagation.
2 For binary constraints, one can refer to [10] for the revisebit propagator.

Boussemart et al. study and experiment in [6] different revision ordering
strategies, using either arc, variable or constraint-oriented propagation queues.
As in previously cited works, Boussemart et al. perform their experiments on bi-
nary CSPs and use an homogeneous propagation algorithm, an improved variant
of AC-3. The main result of their work is that the best variant in this context
is the variable-oriented propagation scheme with the dom variable revision or-
dering heuristic, a result quite close to Wallace & Freuder’s. Indeed, although
constraint or arc-oriented revision ordering heuristics (using the product of the
size of the domains of the variables in the scope of a constraint, an heuristic we
call Πdom) successfully reduces the number of constraint checks compared to
variable-oriented heuristics, they require a high overhead to compute the heuris-
tics. However, the data structures used by Boussemart et al. can be greatly
improved.

Another work of interest is [15] by Schulte & Stuckey. The authors explain the
propagation scheme implemented at the core of the Gecode solver [14]. The tech-
nique is based on another folklore knowledge: since we cannot predict whether
a constraint will filter values or not, let us minimize lost time by propagating
the fastest constraints first. This technique may only be used with an arc or
constraint-based propagation queue. An small integer identifier is associated to
each constraint: 0 for very fast constraints (i.e., constant-time or O(k) propa-
gators), 1 for fast constraints (i.e., O(d) propagators), up to 7 for the slowest
constraints (i.e., NP-hard propagators). The propagation queue is divided in 8
FIFOs, and the integer identifies the queue in which the constraint is assigned.
When picking a constraint for revision, the first FIFO is polled first, then the
second if the first is empty, and so on. Moreover, Schulte & Stuckey propose to
adapt the identifier dynamically, as even a NP-hard propagator can be applied
quite quickly if most variables in the scope of the constraint are assigned.

Interestingly enough, the most successful ordering heuristics devised by Wal-
lace & Freuder or Boussemart et al. (dom or Πdom) also cover the “fastest con-
straints first” principle: the AC-3-based propagations algorithms used in their
experiments use propagators whose time complexities are highly correlated with
the size of the domains.

4.2 Fine, constraint-based revision ordering heuristics

Firstly, we give a simple example showing the limits of the variable-based prop-
agation scheme when the CSP include large arity constraints. Let N be a CSP
with n variablesX1 toXn, dom(Xi) = {1, . . . , n}, and the constraintsXi ≤ Xi+1
∀i ∈ {1, . . . , n − 1} and alldifferent(X1, . . . , Xn). The alldifferent constraint is
implemented using an easy algorithm, which filters out all values present in
singleton domains, and checks whether

∣∣∣⋃X∈vars(C) dom(X)
∣∣∣ ≤ |vars(C)|. This

propagator does not establish (G)AC but is idempotent, detects trivial pigeon-
hole cases and has a quite low complexity (O(kd)).

Let us remove the lowest value from the domain of X1 and propagate. Using
a variable-based propagation scheme with any heuristic, or a constraint-based

Constraint Evaluator

X{<,≤, >,≥, 6=}Y 2∨
(. . .) log2(|vars(C)|)∑
X∈vars(C) X ≤ k |vars(C)|

alldifferent(. . .) |vars(C)|2
a×X + b = Y min(|dom(X)| , |dom(Y)|)
X = Y {+,×}Z |dom(X)| |dom(Y)|+ |dom(X)| |dom(Z)|+ |dom(Y)| |dom(Z)|
X ⇐⇒ C(. . .) evaluator(C) + evaluator(¬C)
positive table table size× |vars(C)|
reviserm ∏

X∈vars(C) |dom(X)|
revisebit [10] |dom(X)| |dom(Y)| ÷ 10

Table 1. Evaluators for various constraints.

propagation scheme with simple FIFO behavior, the propagator for X1 ≤ X2 is
called, removing the lowest value from X2, then the propagator for alldifferent,
then the propagator for X2 ≤ X3, then alldifferent again, etc. With a constraint-
based propagation scheme and a simple heuristic that prioritizes the stronger
and faster ≤ constraints over alldifferent, the propagator for alldifferent would
be called only once, hence a much faster propagation.

As a reference, our implementation requires 4 s to propagate the above sce-
nario with n = 1,000 using a variable-based propagation scheme and 50ms with
a prioritized constraint-based propagation scheme.

We define a constraint-based heuristic as follows: each constraint type must
implement an evaluator, i.e., a method that returns a float number. The number
gives an estimation of the time required to propagate the constraint. In our
implementation, we use either the average-case complexity if available, or the
worst-case complexities of the propagators to compute the estimation. For the
general-purpose reviserm propagator, we fallback to the Πdom heuristic. Table 1
summarizes the evaluators we use for the various constraints implemented in
our constraint solver. In the remaining of this paper, we will call this constraint
revision ordering heuristic eval.

We combine our scheme with the ideas from Balafoutis & Stergiou [1], by
dividing the value computed by the evaluator by the constraint weight, leading
to the so-called eval/w constraint revision ordering heuristic.

4.3 Data structures for priority queues: a survey

When using a heuristic for extracting the variable/constraint with the high-
est/lowest score, the queue is basically a priority queue. Various data structures
have been proposed in the algorithmic literature for handling these. This section
surveys a few of them.

AC-5v and AC-5c require two basic operations: inserting an object in the
priority queue, and extracting the “best” object, that minimizes the score com-
puted by some heuristic. Upon insertion, if the object is already in the queue, its

Data structure Insert Update Remove min Heuristics Plot

m linked lists O(1) O(1) O(m) FIFO + m levels priority
Bit vector O(1) O(1) Θ(λ) Any
Binary heap O(log λ) O(log λ) O(log λ) Any
Binomial heap O(1)* O(log λ) O(log λ) Any
Fibonacci heap O(1) O(1)* O(log λ)* Any
Soft heap O(1)* N/A O(1)* Any (approximated)

Table 2. Various data structures for implementing priority queues. * denotes an amor-
tized complexity.

101 102 103 104
100

200

300

400

500

600

Insert

C
P
U

tim
e

[µ
s]

101 102 103 104

Update
101 102 103 104

Remove min

Fig. 1. Actual performance of our implementations: time to insert, update or remove
minimum in a set of λ elements. Notice the semilog scale: straight plots are actually
log-like.

position is updated. All heuristics devised so far may only evolve during propa-
gation when a variable domain is modified. Thus, it is perfectly sound to update
the heuristic score of a constraint only when such an event occur.

In order to experiment the various data structures, all queues implement
the generic Queue interface as defined in the Java 1.6 API. All queues must be
backed by a Set implementation in order to support the Update operation and
preventing the same object to be inserted twice.

Here follows the list of data structures we implemented and experimented.
Table 2 give the worst-case time complexities for both three basic operations on
a structure containing λ elements. Space complexity is Θ(λ) for all structures
except multiple linked lists which are in Θ(m + λ). Figure 1 shows the per-
formance of our implementations. We implemented the data structures in Java
and benchmarked them using Sun’s Java 1.6u21 64-bit HotSpot Virtual Machine
for Linux, running on a Intel Core 2 Duo processor @ 2.53 GHz. The JiP 1.2
profiler [21] was used to measure the performance of the various operations, us-
ing the following experimental protocol: λ random integer values are inserted in
the priority queue. Then the three following operations are performed 1,000,000
times: an additional random integer value is inserted, the minimum integer is
extracted from the queue, then an element is randomly updated. The profiler is

used to measure the time consumed by each of these three operations. Reported
times are for inserting/updating/removing one single element.

Linked lists are the most common way to implement queues in propagation
algorithms. Actually, FIFO queues are in the core of most solvers.3 However,
linked lists are not designed to be sorted, and picking the smallest element
requires to parse all elements. Using multiple linked lists is an efficient way to
implement very coarse heuristics. The heuristic computes an small integer
number that identifies a FIFO queue in which the variable/constraint is
stored. Our benchmarks used 8 FIFO linked lists. To try to emulate the
behavior described in [15], the appropriate FIFO is chosen based on the result
of the operation blog3(h)c (h is the score computed by the heuristic). Indeed,
the main factor Schulte & Stuckey use to choose the appropriate FIFO is
the arity of the constraint, and the score h computed by the traditional
Πdom heuristic is in O(dk). The base 3 was chosen in order to normalize
the use of all 8 FIFOs in the average case. When an update is requested, the
variable/constraint is moved to the tail of the appropriate FIFO if needed.

Bit vectors can replace linked lists when static or heuristic ordering is used.
One bit is associated to each variable or constraint. The bit is set upon
insertion, and cleared upon removal. This ensures very fast insertion and
update operations, but finding the minimal element still requires to parse all
elements. Boussemart et al. used this scheme in their paper [6].

Binary heap is a well known data structure, and can be used for implementing
priority queues. A binary heap is a naturally balanced binary tree in which
each parent node is smaller than its children. The smallest element is thus
always at the root of the tree. Inserting, updating and removing an element
requires O(log λ) sift operations to maintain the heap property.

Binomial heap [19] use a special tree structure (a “forest” of heap trees) to
achieve fast insertions, although removing the smallest element has the same
performance as insertion. Updates are basically performed by removing and
reinserting the element.

Fibonacci heap [7] is a “lazy” variant of binomial heaps, in which most com-
putations are delayed until the remove min operation is called. Insertions and
updates are thus very fast, although the remove min operation is not much
slower than with binomial heaps, and even more robust for large amounts of
data.

Soft heap [8] is a variant of binary heap in which the heap property is only
maintained on the top of the tree. The root of the tree is thus no longer
guaranteed to be the smallest element. However, the “corruption” is mini-
mal and can be parameterized (we used ε = 10 %). This permits constant
O(log 1

ε) complexities for both insert and remove min operations. However,
insertion is noticeably slower than with other data structures, and update
is not supported by our implementation (the element is simply left in place
upon updating).

3 Simple experiments show that LIFO strategies are almost always worse than FIFO.

AC-5v AC-5c

n e Inserts Updates Remvs Inserts Updates Remvs

bqwh-18-141-0-ext 141 879 4.0M 647 k 2.2M 21M 4.3M 14M
bqwh-18-141-47-glb 141 36 29M 6.2M 15M 28M 7.7M 20M
frb40-19-1 40 410 2.3M 1.4M 1.3M 19M 16M 14M
series-18 69 36 3.1M 963 k 2.5M 3.5M 2.1M 3.3M
ruler-44-9-a3 45 74 2.9M 1.5M 2.0M 4.5M 6.0M 3.3M
langford-3-13 65 27 11M 6.0M 8.3M 9.0M 15M 7.4M
bmc-ibm-02-02 50 k 48 k 91 k 23 k 91 k 94 k 23 k 94 k
crossword-m1-lex-15-04 4.4 k 7.9 k 12M 569 k 11M 167M 8.0M 167M
lemma-24-3 552 924 20M 0 14M 57M 2.8M 47M
os-taillard-5-100-3 625 500 66M 6.1M 59M 125M 15M 103M
scen4 8.3 k 7.6 k 55 k 24 k 53 k 95 k 47 k 92 k
bigleq-70 70 70 18M 16M 10M 30M 36M 19M

Table 3. Number of operations required to solve various problems with the eval heuris-
tic.

Choosing the best data structure may depend on the number of elements
it will contain, as well on the relative importance of the insert, update and re-
move operations. As a reference, the problems used as benchmarks during the
CPAI’08 Itl Solver Competition [16] had on average 863 explicit variables (from
2 to 62,704, std dev is 3,100, median 120) and 5,129 explicit constraints (from
1 to 546,105, std dev is 20,065, median 458). Moreover, using techniques such
as constraint decomposition, symmetry breaking, implicit constraint detection,
second-order consistencies or nogood learning can increase the number of vari-
ables and/or constraints significatively.

Table 3 gives an idea of the relative number of operations required to solve
some well-known benchmark problems using the eval revision heuristic and the
dom/ddeg decision heuristic (the more efficient dom/wdeg heuristic was not used
to avoid any interference with the revision heuristic). The second and third
columns, n and e, respectively show the number of variables and constraints
actually present in the problem once the solver has performed appropriate de-
compositions. The number of removals is usually less than the number of inserts
because the propagation is interrupted (and the priority queues cleared) when
an inconsistency is encountered.

4.4 Note on Set implementation
Several data structures can be used to implement sets: hashtables, ordered trees,
etc. For best, constant-time performance, we rely on simple arrays. An contigu-
ous integer identifier is associated to each object upon creation, which identifies
the index of the array where the structures will be stored. A basic set implemen-
tation can thus use an array of booleans (or a bit vector).

Clearing the sets is also an operation that can have a non negligible impact
on the performances of the resolution. In some of our experiments, an O(λ)

Bit vector 8 FIFOs Bin Heap Binom H Fib Heap Soft Heap

bqwh-18-141-0-ext 20.0 s 11.6 s 26.3 s 11.4 s 12.0 s 14.8 s
bqwh-18-141-47-glb 35.4 s 32.6 s 35.6 s 34.3 s 34.8 s 35.4 s
frb40-19-1 27.8 s 11.8 s 23.0 s 11.0 s 12.4 s 13.7 s
series-18 5.7 s 5.0 s 0.4 s 4.8 s 4.9 s 4.9 s
ruler-44-9-a3 8.3 s 7.2 s 27.1 s 6.8 s 7.0 s 6.8 s
langford-3-13 15.1 s 13.7 s 1.9 s 14.2 s 14.3 s 13.7 s
bmc-ibm-02-02 339.0 s 20.2 s 20.3 s 20.5 s 20.8 s 20.0 s
crossword-m1-lex-15-04 2,204.3 s 210.1 s 433.0 s 265.0 s 273.8 s 283.0 s
lemma-24-3 85.0 s 74.4 s 113.0 s 82.9 s 87.8 s 96.2 s
os-taillard-5-100-3 1,579.6 s 205.7 s 113.3 s 188.9 s 199.0 s 291.7 s
scen4 11.3 s 6.2 s 7.1 s 6.4 s 6.7 s 6.9 s
bigleq-70 318.9 s 45.8 s 50.3 s 42.9 s 43.8 s 42.0 s

Table 4. Time to solve the problems using AC-5c and eval heuristic with various
priority queues.

clear operation could take more than 90% of the CPU time required to solve
the problem! Set clearing can be performed in O(1) by using integer counter, as
proposed in [6] for the modified data structure. An integer number i is associated
to the set, and is incremented when clearing is requested. When an object O is
put in the set, the number iO = i is stored in the structure representing the
object. The object is considered to be present in the set iff iO = i.

5 Experiments

These experiments are performed in the same conditions as before (Sun’s Java
1.6u21 64-bit HotSpot Virtual Machine for Linux, running on a Intel Core 2
Duo processor @ 2.53 GHz), but without the use of a profiler. The constraint
solver used is CSP4J [18]. We selected representative problem instances from
the CPAI’08 competition, that could be solved between 2 and 300 s using the
dom/ddeg decision heuristic. Our experiments are still preliminar: our solver
only implements a few constraint types, and the problem base of CPAI’08 lacks
challenging problems with global constraints, which reduces the “heterogeneity”
of the selected problems. In particular, few of them use global constraints at all.

A first set of experiments, summarized on Table 4, compares the different
data structures using the plain eval constraint revision ordering heuristic. These
results tend to show that either multiple FIFOs or Binomial heaps are the most
efficient data structures for handling constraint revision ordering heuristics (and
that linear-time data structures such as bit vectors definitively are not, despite
their very fast insert and update operations).

Finally, Table 5 compares the different variable- and constraint-based heuris-
tics. AC-5v uses a Binomial heap in these experiments. The dom/ddeg decision
heuristic was used, but constraint weights are still computed as for the dom/wdeg
decision heuristic. These weights can thus be used for the dom/wdeg variable

AC-5v AC-5c/8 FIFOs AC-5c/Binomial heap

dom dom
wdeg Πdom Πdom

w
eval eval

w
Πdom Πdom

w
eval eval

w

bqwh-18-141-0-ext 9.0 9.2 8.9 11.7 10.8 10.9 10.4 11.4 10.5 11.5
bqwh-18-141-47-glb 32.5 32.3 33.8 33.8 33.4 33.7 35.1 33.8 36.2 33.0
frb40-19-1 7.8 8.7 9.7 12.7 12.0 13.2 12.1 14.2 12.2 14.2
series-18 4.9 5.3 5.2 5.1 5.0 5.2 5.1 5.0 5.5 5.5
ruler-44-9-a3 8.9 11.2 7.6 9.1 8.4 10.2 7.2 7.3 7.3 7.8
langford-3-13 17.1 18.1 15.3 15.3 14.4 16.2 15.4 15.9 14.6 16.7
bmc-ibm-02-02 19.6 20.5 19.8 20.0 19.7 19.1 19.6 19.5 19.3 19.2
crosswd-m1-lex-15-04 152.0 139.3 190.6 175.2 220.8 190.9 219.5 187.0 262.6 204.4
lemma-24-3 80.2 85.6 97.7 96.0 91.8 88.6 86.8 89.1 87.0 85.9
os-taillard-5-100-3 206.4 224.1 249.5 190.4 212.6 232.0 257.1 197.9 211.4 205.1
scen4 7.0 6.7 7.4 7.7 7.8 6.4 6.2 6.7 7.0 6.6
bigleq-70 92.4 100.9 34.5 34.5 28.2 97.8 30.8 31.4 27.6 91.2

Table 5. Time (in seconds) to solve the problems with the dom/ddeg decision heuristic
and different revision ordering heuristics.

and for Πdom/w or eval/w constraint revision ordering heuristics. Following
Balafoutis & Stergiou results described in [1], these ordering heuristics are more
senseful when combined with the dom/wdeg decision heuristic.

Although we are aware that these experiments still fail to demonstrate a clear
superiority of constraint-based heuristics, we are convinced that (1) constraint-
based propagation is actually competitive w.r.t. variable-based propagation,
(2) it successfully avoids pathological cases (our bigleq problem), and (3) opens
a new field of research to devise better heuristics.

6 Conclusion & Perspectives

In this paper, we devised AC-5v and AC-5c, generic coarse-grained propagation
algorithms using respectively variable- and constraint-based propagation queues.
After recalling why the management of the propagation queue is important, we
surveyed a few data structures that can be used to control the order in which
variables or constraints will be revised.

We proposed a new, generic way to control the order in which the constraints
are revised using the constraint-based propagation scheme, and showed exper-
imentally that using clever data structures, this way of controlling the prop-
agation can be competitive w.r.t. variable-based propagation, and can avoid
pathological cases. These cases will occur frequently when using heavy global
constraints, such as NP-hard constraints introduced by Lazy Clause Generation
or algorithm hybridization. Variable-based propagation will then no longer be a
viable alternative.

Although our heuristics are still not clearly better than standard general
heuristics, we hope to open the perspectives to devise new techniques, either
adaptative or by taking into account the strength of the constraints.

References

1. T. Balafoutis and K. Stergiou. Exploiting Constraint Weights for Revision Ordering
in Arc Consistency Algorithms. In Proceedings of the ECAI-2008 workshop on
Modeling and Solving Problems with Constraints, 2008.

2. N. Beldiceanu and E. Contejean. Introducing Global Constraints in CHIP. Mathl.
Comput. Modelling, 20(12):97–123, 1994.

3. C. Bessière and J.-C. Régin. Arc Consistency for General Constraint Networks:
Preliminary Results. In Proceedings of IJCAI’97, pages 398–404, 1997.

4. C. Bessière, J.-C. Régin, R.H.C. Yap, and Y. Zhang. An Optimal Coarse-Grained
Arc Consistency Algorithm. Artificial Intelligence, 165(2):165–185, 2005.

5. F. Boussemart, F. Hemery, C. Lecoutre, and L. Saïs. Boosting Systematic Search
by Weighting Constraints. In Proceedings of ECAI’04, pages 146–150, 2004.

6. F. Boussemart, F. Hemery, and C. Lecoutre. Revision Ordering Heuristics for the
Constraint Satisfaction Problem. In Proceedings of CPAI’04 workshop held with
CP’04, pages 29–43, 2004.

7. M.L. Fredman and R.E. Tarjan. Fibonacci Heaps and Their Uses in Improved
Network Optimization Algorithms. Journal of the ACM, 34(3):596–615, 1987.

8. H. Kaplan and U. Zwick. A Simpler Implementation and Analysis of Chazelle’s
Soft Heaps. In Proc. of the 19th ACM-SIAM Symposium on Discrete Algorithms,
pages 477–485, 2009.

9. C. Lecoutre and F. Hemery. A Study of Residual Supports in Arc Consistency. In
Proceedings of IJCAI’2007, pages 125–130, 2007.

10. C. Lecoutre and J. Vion. Enforcing Arc Consistency using Bitwise Operations.
Constraint Programming Letters, 2:21–35, 2008.

11. C. Likitvivatanavong, Y. Zhang, J. Bowen, and E.C. Freuder. Arc Consistency in
MAC: a New Perspective. In Proceedings of CPAI’04 workshop held with CP’04,
pages 93–107, 2004.

12. A.K. Mackworth. Consistency in Networks of Relations. Artificial Intelligence,
8(1):99–118, 1977.

13. J.J. McGregor. Relational Consistency Algorithms and their Application in Find-
ing Subgraph and Graph Isomorphisms. Information Sciences, 19:229–250, 1979.

14. C. Schulte et al. Generic Constraint Development Environment (Gecode). http:
//www.gecode.org/, 2005-2009.

15. C. Schulte and P.J. Stuckey. Efficient Constraint Propagation Engines. ACM
Transactions on Programming Languages and Systems, 31(1):1–43, 2008.

16. M. van Dongen, C. Lecoutre, and O. Roussel. Third International CSP Solvers
Competition. http://www.cril.univ-artois.fr/CPAI08, 2008.

17. P. van Hentenryck, Y. Deville, and CM. Teng. A Generic Arc-Consistency Algo-
rithm and its Specializations. Artificial Intelligence, 57:291–321, 1992.

18. J. Vion. Constraint Satisfaction Problem for Java. http://cspfj.sourceforge.net/,
2006.

19. J. Vuillemin. A Data Structure for Manipulating Priority Queues. Communications
of the ACM, 21:309–314, 1978.

20. R.J. Wallace and E.C. Freuder. Ordering Heuristics for Arc Consistency Algo-
rithms. In Proceedings of NCCAI’92, pages 163–169, 1992.

21. A. Wilcox and P. Hudson. Java Interactive Profiler. http://jiprof.sourceforge.
net/, 2005–2010.

