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Abstract

This article presents two new algorithms whose purpose is
to maintain the Max-RPC domain filtering consistency dur-
ing search with a minimal memory footprint and implementa-
tion effort. Both are sub-optimal algorithms that make use of
support residues, a backtrack-stable and highly efficient data
structure which was successfully used to develop the state-
of-the-art AC-3""" algorithm. The two proposed algorithms,
Max-RPC"™ and L-Max-RPC"™ are competitive with best,
optimal Max-RPC algorithms, while being considerably sim-
pler to implement. L-Max-RPC"™ computes an approxima-
tion of the Max-RPC consistency, which is guaranteed to be
strictly stronger than AC with the same space complexity and
better worst-case time complexity than Max-RPC". In prac-
tice, the difference in filtering power between L-Max-RPC"™™
and standard Max-RPC is nearly indistinguishable on random
problems. Max-RPC™™ and L-Max-RPC"™ are implemented
into the Choco Constraint Solver through a strong consistency
global constraint. This work opens new perspectives upon
the development of strong consistency algorithms into con-
straint solvers.

Introduction

This paper presents a new algorithm for enforcing the Max-
RPC consistency (Debruyne and Bessiere 2001), called
Max-RPC™". 1t is a coarse-grained algorithm that makes
use of support residues (Likitvivatanavong et al. 2004)
in a way similar to the state-of-the-art AC-3""" algorithm
(Lecoutre and Hemery 2007). We also propose L-Max-
RPC™, a simpler, lightweight version of the algorithm that
computes an approximation of Max-RPC with good practi-
cal behavior and low space complexity.

The most successful techniques for solving problems with
CP are based on local consistencies. Local consistencies re-
move values or instantiations that cannot belong to a solu-
tion. The most used, studied and versatile local consistency
is Arc Consistency (AC), which removes values that do not
appear in the instantiations a given constraint allows. AC
is the highest level of consistency that can be obtained by
considering the constraints separately. Higher levels of con-
sistency take into account several constraints at once. They
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require more computing power to be enforced, but by cut-
ting branches of the search tree earlier, the object is to re-
duce the (exponential) number of explored nodes in order to
solve the problems faster. Max-Restricted Path Consistency
(Max-RPC) is a promising consistency that lies between Arc
and Path consistencies.

Background

A binary constraint network (CN) N consists of a pair
(Z°,€), where 2 is a set of n variables and € a set of e bi-
nary constraints. The domain dom(X) of variable X € 2
is the finite set of at most d values that variable X can
take. The constraints € specify the allowed combinations
of values for given pairs of variables. A binary instantia-
tion I is a set of two variable/value pairs, {(X,a), (Y,b)},
denoted {X,,Y,}. An instanciation {X,,Y}} is valid iff
a € dom(X) and b € dom(Y'). A binary relation R is
any set of instantiations. A binary constraint C is a pair
(vars(C),rel(C)), where vars(C') is a set of two variables
and rel(C) is a binary relation. I[X] denotes the value of
X in the instantiation . We also denote C'xy the constraint
such that vars(C) = {X,Y}. Given a constraint C, an in-
stantiation I of vars(C) (or of a superset of vars(C'), consid-
ering only the projection of I on the variables in vars(C)),
satisfies C iff I € rel(C). We say that I is allowed by C.
A solution of a CN N (£, %) is an instantiation Ig of all
variables in 2" s.t. (1) VX € 27, Is[X] € dom(X) (Ig is
valid), and (2.) I g satisfies (is allowed by) all the constraints
iné.

Local consistencies

Definition 1 (Support,Arc-consistency). Let N' = (27, %)
be aCN, C € ¥ and X € vars(C). A support for a value
a € dom(X) wrt. C is an instantiation I € rel(C) s.t.
I[X] = a. A value a € dom(X) is arc-consistent (AC)
w.r.t. C iff it has a support w.r.t. C. N is AC iff VC € ¥,
VX € vars(C), Vadom(X), ais AC w.rt. C.

Definition 2 (Closure). Let N'(27,%) be a CN, ® a local
consistency (e.g., AC). ®(N) is the closure of N for @, i.e.,
the CN obtained from A where all allowed instantiations
(resp. values in the case of domain filtering consistencies)
that are not ®-consistent have been removed.



For AC and for most consistencies applied on discrete do-
mains, the closure is unique.

Restricted Path Consistencies

Path Consistency (Montanari 1974) is one of the most stud-
ied local consistencies. Contrary to AC, applying Path Con-
sistency may require to add constraints, modifying the struc-
ture of the CN, or to alter the relation of existing constraints
by removing allowed instanciations. PC is thus only appli-
cable on CNs defined in extension (relations are defined by
exhautively listing allowed or forbidden instanciations).

Definition 3 (Path Consistency). A binary instantiation
{X,,Y,} is Path Consistent iff VZ € Z\{X,Y}, ¢ €
dom(Z) s.t. {X,, Z.} and {Y;, Z.} are allowed.

Restricted Path Consistencies (RPC, k-RPC and Max-
RPC) are designed to catch some of the properties of Path
Consistency in order to achieve strong domain filtering con-
sistencies (Debruyne and Bessiere 2001), which only prune
values from domains and leave the structure of the CN un-
changed. Max-RPC is the strongest and most promising of
these consistencies (Debruyne and Bessiere 1997).

Definition 4 (Max-RPC). A binary CN N is Max-Restricted
Path Consistent (Max-RPC) iff it is arc-consistent and for
each value X, and each variable Y € 27\ X, at least one
support {X,, Y} of X, is PC.

(Debruyne and Bessiere 1997) propose Max-RPC-1, a
fine-grained algorithm that enforces Max-RPC on a given
binary CN. Max-RPC-1 is close to AC-6, a fine-grained AC
algorithm that does not exploit the bidirectionnality of con-
straints. With g being the maximal degree of the variables
in the CN (the degree of a variable is the number of con-
straints involving it) and c the number of 3-cliques in the
constraint graph, Max-RPC-1 has a worst-case time com-
plexity in O(eg + ed? + cd?) and is proved to be optimal. It
has a space complexity in O(ed + cd).

An enhanced version of Max-RPC-1, called Max-RPC-
Enl is proposed in (Debruyne 1999). By exploiting the
bidirectionnality of constraint in a manner similar to AC-7,
Max-RPC-Enl manages to enforce a consistency stronger
than Max-RPC with the same worst-case complexities (but
slightly higher average-case time complexity).

None of these articles show how these algorithms per-
form when maintaining Max-RPC during search. The Quick
search algorithm, that maintains Max-RPC-EnR (a slightly
weaker variant of Max-RPC-Enl) during search is described
in (Debruyne 1998) (PhD Thesis in French).

A new coarse grained algorithm for Max-RPC

This section presents Max-RPC"™, a new coarse-grained al-
gorithm for Max-RPC. This algorithm uses support residues
(Likitvivatanavong et al. 2004), which were success-
fully used to develop the state-of-the-art AC-3"™ algo-
rithm (Lecoutre and Hemery 2007). rm stands for multi-
directional residues; a residue is a support which has been
stored during the execution of the procedure that proves that
a given value is AC. During forthcoming calls, this proce-
dure simply checks whether that support is still valid before

Figure 1: Example of CN (macro-structure).

searching for another support from scratch. The data struc-
tures are stable on backtrack (they do not need to be reini-
tialized nor restored), hence a minimal overhead on the man-
agement of data. Despite being theoretically suboptimal in
the worst case, Lecoutre & Hemery showed in (Lecoutre and
Hemery 2007) that AC-3""" behaves better than the optimal
algorithm in most cases.

Max-RPC™

Coarse-grained means that the propagation in the algorithm
is managed on a variable or a constraint level, whereas fine-
grained algorithms such as AC-7 or Max-RPC-1 manage
the propagation on a value level. Propagation queues for
coarse-grained algorithms are lighter, can be implemented
very efficiently and do not require to manage extra data
structures for recording which values a given instantiation
supports. Moreover, variable-oriented propagation schemes
permit to implement revision ordering heuristics very effi-
ciently (Boussemart, Hemery, and Lecoutre 2004). In the
following, when a variable is picked from the constraint
queue, the variable with the smallest domain is selected first.

As proposed in (Bessiere and Régin 1997) for the
GAC-Schema algorithm, we refer to the firstSup and
nextSup methods, that permit to iterate over supports of
a given value in an user-defined way. In this way, fast ad-
hoc algorithms (e.g., for arithmetical or positive table con-
straints) can be specified. £irstSup has two parameters:
C and X,, and returns the first support found for X, in
rel(C'). nextSup has an additional parameter: we give to
the method the last support found, so as it can find the first
support strictly after the last one given a static ordering of
rel(C).

Algorithms 1 to 4 describe Max-RPC", O-Max-RPC"™
and L-Max-RPC". Lines 8-14 of Algorithm 1 and Lines
6-11 and 14-15 of Algorithm 3 are added to a standard AC-
37 algorithm. The greyed parts correspond to elements to
be removed in order to apply L-Max-RPC"™, which is de-
scribed in a further section.

Algorithm 1 contains the main loop of the algorithm. It is
based on a queue containing variables that have been modi-
fied (i.e., have lost some values), which may cause some val-
ues in the neighbor variables to lose their supports. In the ex-
ample depicted on Figure 1 (considering only constraints in
&'®), if the variable X is modified, then the algorithm must
check whether all values in 7' still have a support w.r.t. the
constraint C'x, all values in V' have a support w.r.t. Cxvy,
and so on for Y and Z. This is performed by Lines 4-7 of



Algorithm 1: MaxRpC (P = (27,%), %)

Algorithm 3: revise (Cxy, Ya, supportlsPC'): boolean

% . the set of variables modified since the last call to MaxRPC
9 — %,
while 2 # 0 do
pick X from 2 ;
foreachY € 2" |3Cxy € € do
foreach v € dom(Y") do
if revise(Cxy,Y,, true) then
| 2—2U{Y}
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8 foreach (Y, 7) € 22 | I(Cxy,Cyz,Cxz) € 3 do
9 foreach v € dom(Y') do

10 if revisePC(Cyz, Yy, X) then
11 | 2« 20U{Y}
12 foreach v € dom(Z) do
13 if revisePC(Cyz, Z,, X) then
14 | 2—2uU{Z}

Algorithm 2: revisePC (Cyz, Ya, X): boolean

Y : the variable to revise because PC supports in X may have
been lost
1 if pcRes[Cy z, Yo|[X] € dom(X) then
2 | return false ;
3 b« findPCSupport(Ya, Zres X);
4 if b = 1 then
5 L return revise(Cyz, Ya, false) ;

Cyz,Ya]s~

6 pcRes|Cyz,Y,]|[X] < b; return false;

Algorithm 1. The revise function depicted in Algorithm 3
controls the existence of such supports. It removes the value
and returns true iff it does not have any (so false if the value
has not been removed).

The domain of the (modified) variable that has been
picked is also likely to have contained values that used to
make supports in constraints situated on the opposite side of
a 3-clique Path Consistent. In Figure 1, if X is modified,
then the supports of V and Z w.r.t. C'y z, the supports of Y’
and Z w.r.t. Cyz and the supports of 7" and Z w.r.t. Cpyz
need to be checked. This is the purpose of Lines 8-14 of
Algorithm 1 and of the function revisePC (Algorithm 2).

Algorithm 3 iterates over the supports (X3) of the value
to revise (Y,), on Lines 3 and 17, in search of a PC instan-
tiation { X}, Y, }. The Path Consistency of the instantiation
is checked on Lines 6-11 by calling f indPCSupport (Al-
gorithm 4) on each variable Z that forms a 3-clique with X
and Y. findPCSupport returns either a support of the
instantiation {X;,Y,} in Z, or the special value L if none
can be found. Iff no PC support for Y, can be found, the
value is removed and the function returns true.

Residues. The revise function firstly checks the valid-
ity of the residue (Lines 1-2). Residues are stored in the
global data structure res[C, X,], which has an O(ed) space
complexity. The algorithm also makes use of residues for
the PC supports, stored in the structure pcRes with an O(cd)

Y. the value of Y to revise against C'xy — supports in X
may have been lost
supportlsPC: false if one of pcRes[C'xy, Ya] is no longer
valid
if supportlIsPCA res[Cxy,Ya] € dom(X) then
| return false ;

1

2

3 b« firstsup(Cxy,Ya)[X];
4 while b # | do

5 PConsistent < true ;
6

7

8

9

foreach Z € 27 | (X,Y, Z) form a 3-clique do
¢« findPCSupport(Ya, X, Z) ;
if c = L then
PConsistent < false ;

10 break;
11 | currentPcRes[Z] « c;
12 if PConsistent then
13 res[Cxy, Ya] < b;res[Cxy, Xs] — a;
14 pcRes[Cxy,Y,] < currentPcRes ;
15 pcRes|Cxy, Xp| < currentPcRes ;
16 | return false ;
17 | b+ nextSup(Cxvy, Ye, {Xp, Ya})[X];

18 remove a from dom(Y') ;
19 return true ;

Algorithm 4: £indPCSupport (X,, Ys, Z): value

1 ¢ «— firStSup(sz,Xa)[Z] ;
¢ — firstsup(Cyz, Ys)[Z];

ZWhileC1;£J_/\C27£J_/\Cl7502dO

3 if c; < ¢ then

4 ‘ C1 — nextSup(CxLXa, {Xm ZC271})[Z] ;
5 else

6 L C2 HQthup(Cyzvnv {}/177 Zlel})[Z} 5
7 if ¢; = co then return c; ;

8 return | ;

space complexity (c is the number of 3-cliques in the CN).
The idea is to associate the residue found by the revise
function with the found PC value for each third variable
of the 3-clique. In this way, at the end of the process-
ing, (X,,res[Cxy, Xa], pcRes|Cxy, X,][Z]) forms a 3-
clique in the micro-structure of the constraint graph for all
3-cliques (X,Y, Z) of the CN and for all « € dom(X).

In the example depicted on Figure 2, at the end
of the processing we have res[Cxy,X.] = b,
pcRes|Cxy, X,|[Z] = a, pcRes|[Cxy,Y,][Z'] = a, and
so on. The algorithm exploits the bi-directionnality of the
constraints: if 3 is a support for X, with {Z,, Z/} as PC
supports, then X, is also a support for Y3, with the same PC
supports. This is done on Lines 13-15 of Algorithm 3.

If a lost PC support is detected on Line 1 of revisePC,
then an alternative support is searched. If none can be found,
then the current support of the current value is no longer PC,
and another one must be found. This is done by a call to
revise on Line 5 of Algorithm 2.



Figure 2: Example with two 3-cliques (microstructure)

One-pass Max-RPC

One common way to define approximation of a strong con-
sistency @ is to remove the propagation process in the algo-
rithm. The strong consistency property is thus checked only
once for each value of the CN. This process ensures that all
the values that were not ®-consistent before the first call to
the algorithm will be filtered. One example of this idea is
proposed in (Freuder and Elfe 1996) for the Neighborhood
Inverse Consistency property under the name one-pass NIC.

With our Max-RPC™" algorithm, this propagation pro-
cess lies in Line 7 and the foreach do loop on Lines 8-14
of Algorithm 1. In order to apply one-pass Max-RPC, they
must be removed. The revisePC function and pcRes data
structure are no longer useful and can be removed, together
with Lines 11 and 14-15 of Algorithm 3 (all greyed lines
in the algorithms). We call the obtained algorithm O-Max-
RPC™. The same approximation can be used on Max-
RPC-1 to define the O-Max-RPC-1 algorithm. The closure
obtained by applying this consistency is not unique and will
depend on the order in which the modified variables are
picked from 2. As the loss of AC supports is not propa-
gated, O-Max-RPC is incomparable with AC: there exists
CNs that are not AC after applying O-Max-RPC on them,
and AC CNs on which O-Max-RPC can filter some values.
0O-Max-RPC is not incremental.

Light Max-RPC

We propose another approximation of Max-RPC, that lies
between one-pass and full Max-RPC. The idea is to keep the
propagation process of the original Max-RPC algorithm, but
only to propagate the loss of AC supports. This ensures that
the obtained algorithms enforce a consistency that is at least
as strong as AC.

For Max-RPC, this means that we remove the propaga-
tion of lost PC supports (the foreach do loop on Lines 8-14
of Algorithm 1, the revisePC function, the pcRes data
structure and Lines 11 and 14-15 of Algorithm 3). The al-
gorithm can be obtained by removing all the greyed parts
in Algorithms 1-3. Line 7 of Algorithm 1 is kept, so as to
propagate the loss of AC supports. We call this algorithm
L-Max-RPC"". The same approximation can be used to
define the L-Max-RPC-1 algorithm. L-Max-RPC is strictly
stronger than AC: any CN on which L-Max-RPC has been
applied is either empty or AC, and there exists at least one
AC CN on which L-Max-RPC can filter some values. Ap-
plying L-Max-RPC on a given CN does not lead to an unique

/AC
Max-RPC-En —>Max-RPC —» L-Max-RPC \+
O-Max-RPC

Figure 3: Comparing the consistencies. An arrow means “is
strictly stronger than” and the crossed line means “is incom-
parable with”.

closure, L-Max-RPC is also strictly stronger than O-Max-
RPC given the same initial ordering of variables in 2.

Experiments we conducted (see below) show empiri-
cally that the filtering power of L-Max-RPC is only slightly
weaker than that of Max-RPC on random problems, despite
the significant gains in space and time complexities. A sum-
mary of the different consistencies defined in this paper is
given on Figure 3.

Complexity issues

We use these additional notations: c is the number of 3-
cliques in the constraint graph (¢ < (5) € O(n?)), g is
the maximum degree of a variable and s is the maximum
number of 3-cliques that share the same single constraint in
the constraint graph. If the constraint graph is not empty (at
least two variables and one constraint), we have the follow-
ing relation: s < g < m. Let us remind here that in a binary
CN, e < ng/2. The complexities are devised in terms of
constraint checks (assumed in constant time).

Proposition 1. After an initialization phase in O(eg), Max-
RPC™ has a worst-case time complexity in O(ed® + csd*)
and a space complexity in O(ed + cd).

Proof sketch. The initialization phase consists in detecting
and linking all 3-cliques to their associated constraints and
variables, which can be done in O(eg).

The main loop of the algorithm depends on the variable
queue 2. Since variables are added to 2 when they are
modified, they can be added at most d times in the queue,
which implies that the main loop can be performed O(nd)
times. This property remains true when the algorithm is
called multiple times, removing one value from the domain
of one variable every time. The algorithm is incremental, es-
pecially when maintaining Max-RPC in a systematic search
algorithm. We consider separately the two parts of the main
loop.

1. the foreach do loop at Lines 4-7 of Algorithm 1.

This loop can be performed O(g) times. Since in the
worst case, the whole CN is explored thoroughly in an
homogeneous way, it is amortized with the O(n) factor
of the main loop in a global O(e) complexity. The fore-
ach do loop at Lines 5-7 involves O(d) calls to revise
(total O(ed?) revises).

revise (Algorithm 3) first calls £irstSup, which has
a complexity of O(d) (without any assumption on the
nature of the constraint). The while do loop can be
performed O(d) times. Calls to nextSup (Line 17)
are part of the loop. The foreach do loop on Lines



Algorithm Time complexity Space cplx
AC-3™ O(ed?) O(ed)
O-Max-RPC™ | O(eg + ed? + cd®) | Ofc+ ed)
L-Max-RPC™™ | O(eg + ed® + cd®) | O(c+ ed)
Max-RPC™ | O(eg + ed® + csd?) | O(cd + ed)
Max-RPC-En | O(eg + ed® + cd®) | O(cd + ed)

Table 1: Summary of complexities

6-11 can be performed O(s) times, and involves a call
to findPCSupport in O(d). Thus, revise is in
O(d + sd?). The global complexity of this first part is
thus O(ed® + esd*). The O(es) factor is amortized to
O(c), thus a final result in O(ed® + cd*).

2. the foreach do loop at Lines 8-14 of Algorithm 1.
The number of turns this loop can perform is amortized
with the main loop to an O(cd) factor. Each turn exe-
cutes O(d) calls to revisePC, whose worst-case time
complexity is capped by a call to revise on Line 5
of Algorithm 2. This part of the algorithm is thus in
O(cd?.(d + sd?)) = O(csd?).

The algorithm uses three data structures: storing the 3-
cliques in ©(c), storing the AC residues in O(ed) (res data
structure) and storing the PC residues in O(cd) (pcRes data
structure), hence a space complexity in O(ed + cd). O

If revise is called due to the removal of a value that
does not appear in any support, its complexity falls down
to O(sd). In practice, this happens very regularly, which
explains the good practical behavior of the algorithm.

Proposition 2. After an initialization phase in O(eg), L-
Max-RPC™™ has a worst-case time complexity in O(ed>® +
cd*) and a space complexity in O(c + ed).

Proof sketch. As L-Max-RPC™™ skips the 2"¢ part of the
algorithm, the O(csd?) term is removed. As the pcRes data
structure is removed, the remaining data structures are in

O(c + ed). O

Proposition 3. After an initialization phase in O(eg), O-
Max-RPC™™ has a worst-case time complexity in O(ed? +
cd®) and a space complexity in O(c + ed).

Proof sketch. As O-Max-RPC"™™ prevents the modifications
in revise to be propagated, every variable is revised only
once. The main loop of the algorithm is thus performed n
times instead of O(nd). Thus the worst-case complexity is
reduced by an O(d) factor w.r.t. L-Max-RPC". O-Max-
RPC™ has the same data structures as L-Max-RPC™™. [

Note that with all variants of the algorithm, the initializa-
tion phase in O(eg) is performed previously to the first call
to Algorithm 1 and only once when maintaining the Max-
RPC property throughout the search. Table 1 gives a sum-
mary of the complexities of the different algorithms studied
in this paper, as well as those of AC-3""" and Max-RPC-En
for reference.

Figure 4: A strong consistency global constraint C'g, used
to enforce the strong local consistency on a subset of con-
straints '®. N is the new CN obtained when replacing €' ®
by the global constraint.

Implementation

In order to integrate strong consistency algorithms such
as Max-RPC"™ into an event-based solver such as Choco
(Laburthe, Jussien, and others 2008), we designed a new
global constraint and an object-oriented generic scheme, as
detailed in (Vion, Petit, and Jussien 2009).

Choco, like many mature solvers, use an AC-5 based
propagation scheme (van Hentenryck, Deville, and Teng
1992). Propagators are associated with constraints to en-
force a given level of local consistency. We call them event-
based solvers. One of the reasons for which CP is cur-
rently applied with success to real-world problems is that
some propagators are encoded through filtering algorithms,
which exploit the semantics of the constraints. Global
constraints (Beldiceanu and Contejean 1994; Régin 1994;
Bessiere and van Hentenryck 2003) are constraints whose
semantics may correspond to well-known Operations Re-
search problems. Powerful resolution algorithms that exist
for these problems are thus used to implement propagators.
Filtering algorithms are often derived from well-known Op-
erations Research techniques. This provides powerful im-
plementations of propagators. Each propagator is called ac-
cording to the events that occur in domains of the variables
involved in its constraint. Most often, an event is a value
deleted by another constraint. At each node of the search
tree, the pruning is performed within the constraints. The
fix-point is obtained by propagating events among all the
constraints. As constraints are considered independently,
this scheme does not appear to enable the implementation
of strong consistency algorithms.

Given a local consistency ®, the principle of our global
constraint is to deal with the subset 4'® of constraints on
which @ should be applied, within a new global constraint
Cg added to the CN. Constraints in ¥® are connected to
Cg instead of being included into the initial CN N (see Fig-
ure 4). In this way, events related to constraints in €° are
handled in a closed world, independently from the propa-
gation queue of the solver. This permits to implement any
(strong) consistency algorithm in an event-based constraint
solver with minimal implementation effort. As a side effect,
this scheme permits to easily apply different levels of consis-
tency in the same CN, and to coexist with semantics-based
global constraints used to solve the given problem.



Experiments

We implemented the algorithms using our own binary
constraint solver, and in the general-purpose Choco
Solver (Laburthe, Jussien, and others 2008), using the
method described above. On the Figures 5-6, each point is
the average result over 100 generated binary random prob-
lem of various characteristics solved using our binary con-
straint solver. A binary random problem is characterized by
a quadruple (n,d,~,t) whose elements respectively repre-
sent the number of variables, the number of values, the den-
sity! of the constraint graph and the tightness” of the con-
straints.

Pre-processing: Figure 5 compares the time and memory
used for the initial propagation on rather large problems (200
variables, 30 values). Left hand figures are results with 5%
density, right hand figures are results with 15%. Topmost
figures compare Max-RPC-1, Max-RPC"™, their Light vari-
ants, and Max-RPC-Enl. The two small figures show the
percentage of removed values w.r.t. the tightness of the con-
straints. There is a transition phase from a zone where no
values can be removed, to a zone where the inconsistency of
the problems are detected during the pre-processing phase.
The earliest the transition phase occurs, the strongest the al-
gorithm is. Of course, Max-RPC-1 and Max-RPC"™™ detect
the same inconsistent values. With low densities, Max-RPC-
Enl also has the same filtering power. The weaker Light
variants nearly coincide between each other. All algorithms
show a peak in cpu time near the threshold. Although Max-
RPC™™ tends to be the slower algorithm, L-Max-RPC"™ is
the fastest algorithm before the peak and only very slightly
slower than L-Max-RPC-1 after the peak. Bottommost pic-
tures show the comparison between one-pass variants, with
Max-RPC-1 and L-Max-RPC"™" given for reference. The
two one-pass algorithms have about the same performances,
and are only slightly faster than L-Max-RPC"™ despite their
lower filtering power.

These graphs show that L-Max-RPC" is very competi-
tive w.r.t. Max-RPC-1 and Max-RPC-Enl in both speed and
filtering power, despite its simplicity and low space com-
plexity.

Maintaining Max-RPC during search: Figure 6 depicts
experiments with a systematic search algorithm, where the
various levels of consistency are maintained throughout
search. The variable ordering heuristic is dom /ddeg.’> The
impact of the number of variables, number of values and
the density of the problem on the search time and the num-
ber of nodes is evaluated. All runs were done at the thresh-
old point. For each point, we found the tightness ¢,, where
the transition phase occurs, and used that value to gener-
ate the instances. The cpu time (in seconds) and number of
nodes is shown for each algorithm on the left-hand figure.
The relative difference in cpu time and number of nodes be-

!The density is the proportion of constraints in the graph w.r.t.
the maximal number of possible constraints, i.e., v = e/ (g)

2The tightness is the proportion of instantiations forbidden by
each constraint.

3The process of weighting constraints for dom /wdeg is not de-
fined when more than one constraint lead to a domain wipeout.

tween running respectively L-Max-RPC"™ and Max-RPC-
EnR w.r.t. AC-3" at each node of the search is depicted of
the right-hand figures. All graphs show a very similar be-
havior between maintaining Max-RPC-EnR and maintain-
ing L-Max-RPC"™, despite the latter’s simplicity and low
memory usage.

The top left graph shows how the behavior of the different
algorithms evolves as the number of variables grows. The
density is evaluated using the neighb(g, n) function so that
the average degree g of the variables remains constant.* The
graph shows that the additional filtering of Max-RPC algo-
rithms tends to reduce the number of nodes by about 40%
w.r.t. maintaining AC. More time is gained when the num-
ber of variables grows, up to 30% less time taken with Max-
RPC algorithms at 110-120 variables. Top right graph shows
that the number of nodes and time tends to be more reduced
as the size of the domains grows, up to 60% nodes less and
30% time less around 60 variables.

The bottom left graph shows that even though the num-
ber of nodes is reduced by a stable 45-50% factor when the
density grows, it does not longer compensate the additional
time spent in the filtering algorithm. With the given charac-
teristics (50 variables, 20 values), maintaining AC is more
efficient when the density is above 14%.

These figures tends to show that maintaining Max-RPC is
especially efficient on large problems (in terms of number of
variables/values) that are not too much dense, and confirms
the competitiveness of L-Max-RPC"™™ over Max-RPC-En.

Mixing local consistencies:> Table 2 shows the effective-
ness of the possibility of mixing two levels of consistency
within the same model, using the Choco Solver. The first
row corresponds to the median results over 50 instances
of problems (35,17,44%,31%), and the second row to
(105, 20, 5%, 65%) instances. Given its higher density, the
first problem is better resolved by using AC-3""" while the
second one shows better results with Max-RPC. Third row
corresponds to instances where two problems are concate-
nated and linked with a single additional loose constraint.
On the last two columns, we maintain AC on the denser part
of the model, and (L-)Max-RPC"™ on the rest. Mixing the
two consistencies entails a faster solving, which emphasizes
the interest of our approach. The last two rows present the
results with larger problems.

Conclusion & Perspectives

This paper presented Max-RPC"™, a new, simple algo-
rithm for enforcing the Max-RPC domain filtering consis-
tency. Two variants of the algorithm, O-Max-RPC™" and
L-Max-RPC"™™ were proposed, studied, experimented and
compared to the legacy Max-RPC algorithms. Experiments
showed that L-Max-RPC"™ is competitive with state-of-the-
art, optimal algorithms, although being considerably sim-
pler to implement and requiring less data structures. Max-
RPC™™ and its variants were implemented into the Choco
Solver, exploiting (Vion, Petit, and Jussien 2009)’s generic

“neighb(g, n) = g/(n — 1)
SThese results are extracted from (Vion, Petit, and Jussien
2009)
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Figure 5: Initial propagation: cpu time and filtering power on homogeneous random problems (200 variables, 30 values).

AC-3" | Max-RPC"™" | L-Max-RPC™™ | AC-3""+Max-RPC""™" | AC-3""+L-Max-RPC™™"
cpu (s) 6.1 25.6 11.6 non non
(35,17, 44%, 31%) nodes | 21.4k 5.8k 8.6k applicable applicable
cpu (s) 20.0 194 16.9 non non
(105,20, 5%, 65%) nodes 38.4k 204 k 19.8 k applicable applicable
(35,17,44%, 31%) cpu (s) 96.8 167.2 103.2 90.1 85.1
+(105, 20, 5%, 65%) nodes 200.9k 98.7k 107.2k 167.8k 173.4k
cpu (s) 73.0 60.7 54.7 non non
(110,20,5%,64%) 7 des | 126.3k 54.6k 56.6k applicable applicable
(35,17,44%, 31%) cpu (s) 408.0 349.0 272.6 284.1 259.1
+(110, 20, 5%, 64%) nodes 773.0k 252.6k 272.6k 308.7k 316.5k

Table 2: Mixing two levels of consistency in the same model

scheme for adding strong local consistencies to the set of
features of constraint solvers. This technique allows a solver
to use different levels of consistency for different subsets of
constraints in the same model. The interest of this feature is
validated by our experiments.

This work opens many perspectives upon the devel-
opment of strong consistency algorithms. The use of
backtrack-stable data structures such as support residues,
and the development of approximations of strong consisten-
cies seem very promising. Future works include the devel-
opment of strong consistency algorithms that can be applied
on non-binary CNs.
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