Replication in fault-tolerant distributed CSP

Fadoua Chakchouk!-2, Sylvain Piechowiak!, René Mandiau®, Julien Vion',
Makram Soui?, and Khaled Ghedira?

! LAMIH UMR CNRS 8201, University of Valenciennes, France
2 ENSI, University of Manouba, Tunisia

Abstract. Distributed CSPs present distributed NP-complete problems which
need to satisfy constraints to be solved. To solve such problems, many algorithms
based on multi-agent systems have proposed in the literature, which may give
wrong results if an agent dies. This paper proposes an approach which handles a
failure of one agent to guarantee the accuracy of final results. To solve the DisC-
SPs, we use Multi-ABT as an algorithm of resolution. Our approach is based on
a duplication principle; each local CSP is copied in another agent. Then, if one of
them fails, its local CSP is supported by the one which owns the copy of its CSP.
Experiments results show that our approach gives the same results obtained if a
DisCSP is solved by Multi-ABT without failure.

1 Introduction

For real industrial applications, we must keep the robustness of our approach. The ro-
bustness is also a critical problem for multi-agent systems (MAS), and in particular to
solve constraints satisfaction problems (DisCSP). To solve DisCSPs, many algorithms
based on agents interaction have been proposed in the literature: each agent encapsu-
lates a sub-problem from the global CSP, it solves it, then, agents interact with each
other to find a global solution. We are convinced that the DisCSP approach facilitate
the Knowledge representation of the application, and they already investigate varied
problems such as timetabling/meeting problems, road traffic, multi-robot exploration
[8]. For example, Solotorevsky and Gudes [10] present a nurses timetabling and trans-
portation problem in a hospital. This problem aims to manage the rents transportation
services of the hospital while respecting the timetabling of each department nurses.

In the literature, a failed system was defined by Tanenbaum et al [11] as a sys-
tem which “cannot meet its promises”. To detect an entity failure, authors propose to
send checking activity message to agents of the system, to which the sender waits for
response. Also, Dunagan et al [2] propose a failure notification service if an entity fails.

A failure in a DisCSP such as a death of an agent produces either a partial solution,
or no solution, in the worst case. This paper presents an approach to obtain expected
result if an agent dies. Our studies are based on a classical DisCSP, Multi-ABT [6]
(and may be adapted to other models). To this end, the sub-problem of failed agent
will be supported by another agent of the system chosen by a distribution algorithm.
This agent has to solve its own sub-problem and the one of the failed agent. In the
previous example, A failure of an agent in the nurses management problem presented
by Solotorevsky and Gudes [10] provides a transportation planning incoherent with the

2 F. Chakchouk et al.

nurses timetabling. More generally, the failure agent does not allow a correct result:
the property of robustness is not checked. The paper describes a proposal based on the
replication (i.e., a duplication of local CSP) to answer to this problem.

The remainder of this paper is structured as follows: Section 2 presents the def-
initions of DisCSP, Multi-ABT and discuss the related work. Section 3 explains our
proposed approach. Section 4 presents our experiments and Section 5 concludes the
paper and give some perspectives.

2 Background

A CSP is a set of variables which are related to each other through a set of constraints.
Each variable has a number of values that can be assigned to it (called the variable
domain).

A DisCSP is a CSP which is solved by a multi-agent system. Each agent encap-
sulates one or more variables. A DisCSP is solved if each variable has an assigned
value from its domain, and the problem constraints are satisfied. Many algorithms are
proposed in the literature. Generally, they concern the multi-variables DisCSP where
each agent has more than one variable, such as Multi-Asynchronous Backtracking Al-
gorithm (Multi-ABT) [6], Multi-Asynchronous Weak Commitment (Multi-AWC) [14],
Asynchronous Forward Checking (AFC) [3], and Multi-Distributed Backtracking Al-
gorithm (Multi-DBS) [8].

In this paper, we focus to Multi-ABT where agents are ranked according to a priority
order. It works as follow:

— Each agent finds a solution for its local CSP and sends it to neighbors having a
lower priority through an OK? message.

— Receiving OK? message, an agent records the message content and tries to find a
coherent solution with it. If there is no coherent local solution, the agent sends "BT
message” to the OK? message sender to modify its solution.

— Multi-ABT stops if the agent having higher priority does not find a coherent local
solution (unsatisfiable DisCSP), or if the agent having lower priority find a coherent
local solution (satisfiable DisCSP).

In the literature, different methods have proposed to improve robustness and fault
tolerance of multi-agent system. Klein et al [7] propose an approach to handle agent
death within a Contract Net protocol. This approach is based on domain-independent
Exception Handling service. This service aims to find an agent which can support the
died agent task. This agent is chosen after a negotiation between the agents. Fedoruck
et al [4] proposed an approach based on a transparent agent duplication. The concept
is to introduce proxies which acts as an interface between the replicates group and
system components. The role of these proxies is to reveal replicates group as one entity.
Another method based on the concept of duplication was proposed by Guessoum et al
[1, 5] to identify critical agents in the system and duplicate them. A critical agent is the
one which has a high probability to fail.

If an agent dies during the execution of Multi-ABT, the algorithm can provide wrong
results. To handle agent failure within a multi-agent system, proposed approaches use

Replication in fault-tolerant distributed CSP 3

agents duplication, but no one is applied to solve Distributed CSPs. This paper proposes
an approach which aims to guarantee the resolution of a DisCSP in presence of died
agent.

3 Solving DisCSP process in presence of failed agent

This section presents the new messages (necessary for our approach) to detect a failed
agent during Multi-ABT execution (3.1), the general process and different algorithms
used to handle the failure (3.2). Then, it presents different properties for our approach
(3.3).

3.1 Messages for Failure Detection

To detect an agent failure during solving a DisCSP using Multi-ABT, two additional
message types are used:

Check(A4;, active): It is the same kind of message defined by Tanenbaum [11] — If an
Agent A; does not receive any message from one of its neighbors for a defined time
interval, it sends it this message to check if it is still active. Receiving this message,
an agent suspends its behavior to respond to it by a message having "ACTIVE” as
a content, otherwise, it will be considered as failed agent.

Inform(A;, Neighbors(A;), A;): After detecting an agent A; failure, the agent A;,
which detects the failure, informs its neighbors of this failure. Receiving this mes-
sage, Neighbors(A;) transmit it to their neighbors, and so on. This diffusion aims
to inform all the died agent neighbors of this failure.

3.2 Handling failure process
The general process of our approach operates as follow (Algorithm. 1):

— The process begins by executing a DistributeCSP algorithm (Algorithm 2) (Line 1).
Receiving the additional CSPs, each agent creates a list CSP,44 Where it records
received CSPs (Line 2-3).

— After distributing the local CSPs, the DisCSP solving starts by executing Multi-
ABT (Line 4). If, after a time interval, no message is delivered from A; to A; (Line
5), the process of failure detection begins by sending < C'heck > message to A;
(Line 6).

— If A; does not respond to this message (Line 7), it is considered as a failed agent
(Line 8), and the information message < Info > is sent to A; neighbors (Line 9).

— Receiving the information of A; failure, each agent (and A;) transmits this mes-
sage, and checks if it owns the failed agent CSP in its CSP, 44 list (Line 10). Then,
the agent merges its own local CSP with the one of the failed agent by executing
Merging CSP algorithm (Algorithm. 3) (Line 11).

— After merging local CSPs, the agent informs A; neighbors that it supports the failed
agent CSP (Line 12) by sending a < MergeCSP > message.

4 F. Chakchouk et al.

Algorithm 1: GeneralProcess

Input: DisCSP : problem to solve
1 DistributeCSP();
2 foreach A4;,: € {1,..,n} do
CSPaaa(Ai) < 0
Algorithm of resolution;
if TimeOut(A;), A; € Neighbors(A;) then
Send < Check > to (A);
if NotReply "ACTIVE” then

failed(A;) < True;
L Send < Inform > to (Neighbors(A;));

RTINS B LY I NN

10 if (CSP(A;) € CSP,44,) then
11 MergingCSP();
12 | Send < MergeC'SP > to (Neighbors(4;));

13 | Update Neighbors(A;)

— In the end of general process, each agent updates its neighbors list. If it is the one
which supports failed agent CSP, it adds failed agent neighbors to its neighbors
list. Otherwise, it deletes failed agent from its neighbors list, and replaces it by the
delegate one (Line 13).

DistributeCSP Algorithm This algorithm aims to have a copy of each local CSP
among another agent. It guarantees that an agent can have one or more copies of CSPs,
but a local CSP is copied once and once only, to ensure that the local CSP of failed agent
will be supported by a single agent. Also, it avoids to obtain all local CSPs among a
single agent. The algorithm is executed by a Dispatcher Agent which occurs only during
the distribution, i.e. its absence does not affect the resolution of global CSP.

Algorithm 2: DistributeCSP

Input: CSPs : all local CSPs
MaxCSP + 0;
while CSPs # () do
foreach A;,i € {1,..,n} do
if size(C'SPhad(As)) < MaxCSP then
foreach Neig € neighbors(A;) do
if —assigned(C'SPneig) then
CSPadd(Ai) — CSPadd(Ai)] {CSPNeig} ;
assigned(CSPyeig) < true;
CSPs + CSPs—{CSPneig} ;

(RN - N7, T O T R SR

0 | MaxCSP <+ MaxCSP +1;

Replication in fault-tolerant distributed CSP 5

DistributeCSP Algorithm operates as follow: As input, the Dispatcher agent has the
list of local CSPs of different agents. Firstly, the Dispatcher Agent defines MaxCSP as
the maximum size of created C'SP,4q (Line 1). The distribution process is executed
until obtained an empty CSPs list (Line 2). The Dispatcher Agent checks the C'SP,4q
size of each agent (Lines 3). If it is lower than the MaxCSP value (Line 4), it checks
whether the CSP of one of each agent A; neighbors is assigned to another agent (Lines
5-6). Then, it passes to the next neighbor of A;. Else, it assigns it to A; (Lines 7-8),
and deletes it from the no assigned local CSPs list (Line 8). The MaxCSP value is
incremented after each iteration (Line9).

After distributing local CSPs, Dispatcher Agent behavior is suspended until receiv-
ing new failure information.

MergingCSP Algorithm MergingCSP algorithm is executed by the agent whose CSP, 44
list contains a copy of failed agent CSP. This algorithm aims to merge two CSPs be-
longing to two different agents to obtain a single local CSP.

The CSPs merging is executed as follow: The merging is done between CSP of agent
that execute this algorithm and failed agent A; CSP. So, A; CSP is declared as input. If
A; owns a copy of failed agent CSP in its C'S P, 44 list, it executes merging instructions
(Line 1). CSP variables of A; are added to variables of A; CSP (Lines 2-3), and all
intra-agent constraints of A; become intra-agent constraints of A; (Line 5). Inter-agent
constraints that interconnect A; and A; become intra-agent constraints of A; (Lines 6-
7). Also, inter-agent constraints that connect A; and agents other than A; become inter-
constraints of A;. Finally, and after updating its neighbors list, Agent A; informs failed
agent neighbors that it will support failed agent CSP by sending < MergeCSP >
message. < MergeCSP(A;, A;) > message contains the agent which support failed
agent (Agent A;), and failed agent (Agent A;). This message is sent in order to allow
receiving message agents to update their neighbors list. Since A; possess a new local
CSP, it resumes CSP solving from the beginning.

The CSPs merging is all along consistent. In fact, during the global CSP construc-
tion, each variable and each intra-constraint belong to a single agent (an agent local
CSP is unique).

Algorithm 3: MergingCSPs
Input: C'SP; : CSP of failed agent
1 ifCSP; e CSPadd(Ai) then
2 foreach Var; € CSPj do
L Variables(A;) < Variables(A;) U{Var;};
foreach C;; € C'SP; do
Constraints(A;) < Constraints(A;) U{Ci;};
if ~intra(C;;) then
L intra(Cy;) < True;

w

B I N SN

6 F. Chakchouk et al.

3.3 Properties

We show the main properties for our approach, which do not change the initial algo-
rithm:

Soundness and completeness: Handling failure approach is sound and complete. If
the approach stops, all DisCSP variables have assigned values, and all constraints
are satisfied, if a solution exists [13].

Termination: This approach terminates after solving global DisCSP since Multi-ABT
terminates [13]

Space complexity: Each agent needs O(dn + e + 2d™) of memory where e si the
number of system constraints, d is size of each variable domain, n is the number of
variables of each agent,

Time complexity: It is O(m? + N + €intrad™ + €interd”™) for each agent such as
€intrq and €;,4¢, are the number of constraints intra and inter-agent of each local
CSP, respectively, d is the domain size of each agent, N is the total number of
variables, and m is the number of agents in the system [9].

4 Experiments

This section describes different assumptions used in our experiments (4.1), and present
obtained results (4.2).

4.1 Assumptions

To validate our approach, different DisCSPs are randomly generated according to pa-
rameters < m, n, d,p > such as:

— m is the number of agents of the system

— N is the number of CSP variables with a domain d

— p is the hardness of each constraint in the system that presents the percentage of
each constraint to be satisfied.

To guarantee the same degree of generated DisCSP hardness, proposed parameter
values belong to transition phase defined by Xu et al. [12]. So that DisCSP belongs
to transition phase, it is necessary that d > VN , such as N is the variables number
of the system, and p < 50%. Constraints number was defined by Xu et al. [12] as
e=—N.(m%).

To evaluate proposed failure handling, obtained results of handling failure are com-
pared with those obtained if the failure is not detected, and if there is no failure. This
comparison is done according to evaluation criteria proposed by Mandiau et al [8]: The
number of exchanged messages, total CPU calculated from the beginning of Multi-ABT
execution to the end of slower agent behavior, and the Number of Checked Constraints
NCCC.

For each instance, an agent failure is simulated just after sending its first solution.
The failed agent is chosen randomly. If the agent with lower priority does not receive

Replication in fault-tolerant distributed CSP 7

any message from any agent for 90 seconds, the algorithm stops. To do this, we used
JADE multi-agent platform. Results of these simulations were obtained on a computer
equipped with 2.4 GHz Intel Core i7 and 8Go of RAM. Results concern instances hav-
ing as parameters < m,n,6,0.4 >.

4.2 Results

Figure 1 presents results of solving DisCSPs having failed agent with and without ap-
plying our approach. The y-axis presents the percentage of results that give a solution.
This figure presents only instances that give solutions because, in absence of an agent,
and if the result is wrong, the system displays automatically that there is no solution.
In this figure, the number of expected results obtained by solving DisCSP in presence
of failed agent decreases if the number of agents increases. But if our approach is ap-
plied, the same results as those obtained by applying Multi-ABT without failed agent
are obtained (all instances giving solutions with Multi-ABT provide also solutions by
applying our approach).

100 8 —8 — 8 — 8 — 8 —*%

80 - —e— No Handling Failures
—=— With Handling Failures

60 |- |
40 .

20 |- B

Percentage of expexted results (%)

| | | 'y °
0 5 10 15 20 25
Number of agents

w
=0
w,
ot

Fig. 1. Results obtained with and without handling failure

Figure 2 presents the variation of exchanged messages. The number of exchanged
messages decreases if the system loses an agent. This decreasing is due to the loss of
messages sent by the failure agent. Also, applying our approach, exchanged messages
number increases. This increasing is due to the addition of exchanged messages after
detecting the failed agent. In fact, since some agents resume the resolution from the
beginning after detecting the failure, some messages are sent twice : before and after
the failure detection.

Figure 3 presents the CPU spent by each resolution method. A decreasing of 40% is
observed in DisCSPs with 30 agents which is due to the elimination of the failed agent
behavior. On the other hand, an increasing of the CPU is observed, when applying our
approach, which is due to the added information to handle. In fact, the time spent to

F. Chakchouk et al.
6,000
—e— Without Failures
—m— No Handling Failures
—e— With Handling Failures b
4,000 -
%
%
3
=
2,000 |-
0 |
0 5 10 15 20 25 30 35

Number of agents

Fig. 2. DisCSP solving for the number of Messages

detect failed agent, merge the CSPs and transmit different information, is an extra time
that added to the initial CPU time.

200 T T T
—e— Without Failures]
—m— No Handling Failures
1501 With Handling Failures
3 ,
Py
E 100 |
= N
jo)
9
@)
50 -
0 | | |
0 5 10 15 20 25 30 35

Number of agents

Fig. 3. DisCSP solving for the CPU Time

Figure 4 presents the number of NCCCs with and without agent failure. Its val-
ues decreases slightly if a failure is not handled, and this is due to the loss of some
inter-agent constraints checking (which belongs to the failed agent). This decreasing of
NCCCs number if an agent dies is due to the diminution of solutions number of the
merging CSP. In fact, since the agent has more intra-agent constraints, the number of its
solutions decreases. Then, during the resolution, the agent has less solutions to check.

The variation of these values does not affect the final result. In fact, this paper is
interested to the final solution of the DisCSP, to obtain the same result as that obtained

Replication in fault-tolerant distributed CSP 9

without died agent. In spite of the variation of exchanged message number, of NCCCs
number and of spent CPU time, the proposed method can solve a global DisCSP having
a failed agent by giving the same result as the one given without died agent.

T T T T
s00l Without Failures
—m— No Handling Failures]
—e— With Handling Failures .
600 |- >
Q
Q
O
Z 400 |-
200 |-
0
0 5 10 15 20 25 30 35

Number of agents

Fig. 4. DisCSP solving for NCCC

5 Conclusion

Distributed systems are used to solve some problems that can not be solved by central-
ized way. But, a failure in a distributed system can influence the final result. This paper
proposes a method, which is applied on Multi-ABT, to solve a DisCSP if an agent fails.
This method is based on the duplication of the local CSP of each agent. Each local CSP
should be copied in another agent. If one agent fails, the agent which owns a copy of its
CSP will supports it. The choice of this agent is made by an algorithm of distribution.
During the resolution and after detecting the failed agent, the agent having a copy of its
CSP merges its own CSP with the one of failed agent to obtain a new local CSP. The
changes are done only in a local CSP, i.e. the global DisCSP is still the same one.

Most research on DisCSP considers that each agent encapsulates one variable, that’s
why, experiments consider single-variable case. The experiments results show that re-
sults obtained by applying the proposed method are the same as that given by Multi-
ABT without failed agent. Also, they show that our method is expensive in term of
CPU and exchanged messages. This method can be applied with multi-variable case,
i.e. each agent encapsulates more than a single variable. Also, it can be adapted to be
applied with other algorithms than Multi-ABT such as Multi-AWC and Multi-DBS. It
can be adapted to handle too more than a single failure. The downside of this method is
that not respect the privacy of each agent, since the local CSP of each agent should be
copied in another one.

10

F. Chakchouk et al.

Bibliography

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

[9]

(10]

(11]

[12]

[13]

(14]

S. Ductor, Z. Guessoum, and M. Ziane. Adaptive replication in fault-tolerant
multi-agent systems. In Proceedings of the 2011 IEEE/WIC/ACM International
Conference on Intelligent Agent Technology, pages 304-307, 2011.

J. Dunagan, N.J.A. Harvey, M.B. Jones, D. Kostic, M. Theimer, and A. Wolman.
FUSE: lightweight guaranteed distributed failure notification. In 6th Symposium
on Operating System Design and Implementation, pages 151-166, 2004.

R. Ezzahir, C. Bessiere, M. Wahbi, 1. Benelallam, and E.H. Bouyakhf. Asyn-
chronous inter-level forward-checking for discsps. In Proceedings of the 15th
International Conference on Principles and Practice of Constraint Programming,
pages 304-318. Springer-Verlag, 2009.

A. Fedoruk and R. Deters. Improving fault-tolerance by replicating agents. In
Proceedings of the First International Joint Conference on Autonomous Agents
and Multiagent Systems: Part 2, pages 737-744. ACM, 2002.

Z.. Guessoum, N. Faci, and J-P Briot. Adaptive Replication of Large-Scale Multi-
agent Systems — Towards a Fault-Tolerant Multi-agent Platform, pages 238-253.
Springer Berlin Heidelberg, 2006.

K. Hirayama, M. Yokoo, and K. Sycara. An easy-hard-easy cost profile in dis-
tributed constraint satisfaction. Information Processing Society of Japan journal,
45(9):2217-2225, 2004.

M. Klein, J.A. Rodriguez-Aguilar, and C. Dellarocas. Using domain-independent
exception handling services to enable robust open multi-agent systems: The case
of agent death. Autonomous Agents and Multi-Agent Systems, 7(1-2):179-189,
2003.

R. Mandiau, J. Vion, S. Piechowiak, and P. Monier. Multi-variable distributed
backtracking with sessions. Appl. Intell., 41(3):736-758, 2014.

P. Monier, S. Piechowiak, and R. Mandiau. A complete algorithm for discsp:
Distributed backtracking with sessions (dbs). Second International Workshop on:
Optimisation in Multi-Agent Systems (OptMas), Eigth Joint Conference on Au-
tonomous and Multi-Agent Systems, 2009.

G. Solotorevsky and E. Gudes. Solving a real-life nurses time tabling and trans-
portation problem using distributed csp techniques. Technical report, In Con-
straints and Agents: Papers from the 1997 AAAI Workshop, 1997.

A.S Tanenbaum and M.V Steen. Distributed Systems: Principles and Paradigms
(2Nd Edition). Prentice-Hall, Inc., 2006.

K. Xu, F. Boussemart, F. Hemery, and C. Lecoutre. Random constraint satisfac-
tion: Easy generation of hard (satisfiable) instances. Artif. Intell., 171(8-9):514—
534, 2007.

M. Yokoo, E.H. Durfee, T. Ishida, and K. Kuwabara. Distributed constraint sat-
isfaction for formalizing distributed problem solving. In Proceedings of the 12th
International Conference on Distributed Computing Systems, Yokohama, Japan,
June 9-12, 1992, pages 614—621, 1992.

M. Yokoo and K. Hirayama. Distributed constraint satisfaction algorithm for com-
plex local problems. In Proceedings of the Third International Conference on
Multiagent Systems, pages 372-381, 1998.

