
Fault Tolerance in DisCSPs: Several failures case

Fadoua Chakchouk1,2, Sylvain Piechowiak1, René Mandiau1, Julien Vion1,
Makram Soui2, and Khaled Ghedira2

1 LAMIH UMR CNRS 8201, University of Valenciennes, France
fadoua.chakchouk@univ-valenciennes.fr,

2 ENSI, University of Manouba, Tunisia

Abstract. To solve a distributed problem in presence of a failed entity,
we have to find a way to accomplish the failed entity tasks. In this paper,
we present an approach which guarantees the resolution of DisCSPs in
presence of failed agents. This approach is based on local CSPs replica-
tion principle: each failed agent local CSP is replicated in another agent
which will support it. Obtained results confirm that our approach can
solve a DisCSP in presence of failed agents by giving a solution when it
exists.

Keywords: DisCSP, Robustness, Fault tolerance, Replication, Agent
failure

1 Introduction

Distributed systems as Multi-Agent Systems (MAS) are defined as a set of enti-
ties that appear to users as a single system. This kind of system is characterized
by a partial failure notion : if a component fails, it can affect the proper operation
of other components, while at the same time leaving yet other components to-
tally unaffected [8]. A failed system is defined in the literature as a system which
cannot achieve its goals. In this paper, we are interested to take account agents’
failures in a Multi-Agent System to solve Distributed Constraint Satisfaction
Problems (DisCSP). In centralized systems, the failure of an agent causes the
abandon of the solution search. However, in distributed systems, we defend the
idea that the failure of an agent can be covered by replicating the failed agent
tasks to another agent.

This paper presents an approach to solve DisCSP that can support the failure
of more than one agent. It is based on replication principle: each failed agent
local CSP is replicated in another active agent. The organization of this paper is
as follows: Section 2 presents DisCSP definition and the fault tolerance in multi-
agent systems. Section 3 describes different steps of our proposed approach.
Section 4 presents results obtained with the proposed method to solve DisCSPs.
Finally, Section 5 concludes and gives our perspectives.

2 F. Chakchouk et al.

2 DisCSP and fault tolerance

To solve a DisCSP, each agent has a set of variables to which it assigns values
from a predefined domains. These agents communicate together in order to sat-
isfy a set of constraints that connect variables. This paper is intended to solve
DisCSPs where each agent has more than one variable. We focus on Multi-ABT
algorithm [6]. In fact, this algorithm is well-known in this field.

Results provided by this algorithm in presence of failures can be wrong. Ac-
cording to Tanenbaum and Steen [8], the distribution concept of a system aims to
recover from partial failures without seriously affecting the overall performance.
A failure can affect agents, such as crash failures (sudden stop of an agent), or
byzantine failures (if an agent provides wrong results which are considered cor-
rect). It can also affect communication between agents, such as omission failures
(if an agent does not respond to requests), or Timing failures (if an agent exceeds
a response time interval).

To cover these failures, several methods are proposed in the literature, based
on agents replication, or the utilization of sentinels. An approach based on repli-
cation agent is proposed by Fedoruck et al [3]. This approach principle introduces
proxies which reveal replicates group as one entity. Some proxies choose and
manage replication modes, while other proxies manage all internal and external
group communications. Other approaches based on critical agents replication are
proposed by Ductor et al. [2] or Guessoum et al [4]. A critical agent is the agent
having the higher probability to fail. Sentinels were proposed for the first time by
[5] as entities that monitor agents features, and protect them from undesirable
events.

3 Proposed Approach

In this paper, we propose an approach that handles the crash failure in a DisCSP.
To solve DisCSP in presence of failed agent, its local CSP should be solved. Our
approach aims to find a global solution by solving failed agent CSP. The approach
detects the failed agent, and assigns its CSP to another agent by replicating the
CSPs of failed agents in other ones. This assignment is done by an agent called
Dispatcher Agent (ADis). In this section, we present the solving process details
: the failed agent detection, and the handling failure details.

3.1 Failure Detection

To detect a failed agent, additional messages are exchanged between agents.

Check (state) message This message is sent by an agent Ai to its neighbor
Aj . Tanenbaum [8] introduced this kind of message within distributed sys-
tems: if Ai does not receive any solving message from one neighbor Aj for
a time interval, it sends to it this message to check its state. If Ai does
not receive a response for this message from Aj , it considers Aj as a failed
agent. The Check Message has the highest priority; i.e. if an agent receives
this message, it suspends its behavior to reply to it.

Fault Tolerance in DisCSPs 3

Active () message This message is sent by Aj to Ai as a response to a Check
message received from Ai.

isFailed (Aj) message It is sent by an agent Ai to the agent ADis to inform
it that an agent Aj is failed. Receiving this message, Agent ADis replicates
each failed agent CSP to another agent.

A failed agent is an agent which can neither receive nor send messages. The
failure is detected during the global DisCSP solving.

3.2 Failure Handling Algorithm

The proposed approach is composed from the solver agents Ai of the DisCSP,
and the Dispatcher Agent ADis. Each agent Ai has a list called CSPadd, where
it will store the replicas sent by Agent ADis later. A replicas is a copy of a failed
agent local CSP.

The agents start the CSP solving as follows (Algorithm 1): Each solver agent
self solves its local CSP and interacts with its neighbors according to Multi-
ABT algorithm (Line 1). During the CSP solving, if the agent self does not
receive solving messages from one neighbor Aj after a time interval (TimeOut)
(Line 2), self sends to Aj a Check(state) message (Line 3). If self does not
receive an Active message from Aj for an interval time (TimeOutState) (Line
4), Ai considers it as a failed agent (Line 5), and informs its Agent ADis by
sending to it isFailed(Aj) message (Line 6).

After identifying failed agents (Algorithm 2) and informing Agent ADis,
Agent ADis sends the failed agents’ CSPs replicas to the solver agents. Each
agent Ai records the received replicas in its CSPadd list. Then, it merges the
CSPadd with its local CSP by executing MergingCSP() algorithm (Line 2).
Each agent informs its neighbors that it supports Aj local CSP by sending
MergeCSP (Ai, Aj) message (Line 3), which contains the ID of a failed agent
(Aj), and its delegate (Ak). Receiving this message, each agent deletes failed
agents from its neighbors list, replace them by the delegate ones, and transmits
the MergeCSP (Ai, Aj) message to its neighbors.

Algorithm 1: Failure detection

Input: CSP : local CSP to solve
1 Multi-ABT:local CSP solving;
2 if TimeOut(Aj), Aj ∈ Neighbors(self) then
3 self sends Check(state)to(Aj);
4 if self does not receive Active() from (Aj) after TimeOutState(Aj)

then
5 Aj is considered failed;
6 self sends isFailed(Aj) to ADis;

4 F. Chakchouk et al.

Algorithm 2: After failure detection

Input: Aj : the failed agent
1 foreach (CSP (Aj) ∈ CSPadd(self)) do
2 MergingCSP();
3 self sends MergeCSP (Ai, Aj) to its neighbors;

3.3 Replication Process

This process aims to replicate the local CSP of failed agents in other ones. It
ensures that an agent can have more than one copy of different CSPs, but a CSP
is replicated within only one agent. According to this process, a CSP of a failed
agent is supported by only one agent. This process is executed only and only
if the Dispatcher Agent ADis receives information of failed agents. We suppose
that Agent ADis knows already the failed agents number (before starting DisCSP
solving).

Algorithm 3: ReplicateCSP: Dispatcher Agent

Input: CSPs : list of failed agents local CSPs
1 foreach Ai, i ∈ {1, ..,m} do
2 if Ai is not failed then
3 List(Ai)← { } ;
4 repeat
5 foreach Aj ∈ neighbors(Ai) do
6 if ¬replicated(CSPj) then
7 List(Ai)← List(Ai) ∪ {CSPj} ;
8 CSPs← CSPs− {CSPj} ;

until CSPs = { };

To replicate local CSPs, the Agent ADis has the list of failed agents’ CSPs as
an input (Algorithm 3). Firstly, it proceeds by creating an empty list List(Ai) for
each active agent Ai (Lines 1-3) where it records the replicas of CSPs assigned
to each agent. Then, it sends the lists to agents in the end of replication process.
After that, for each agent (Ai)’s neighbor (Line 5), Dispatcher Agent checks
if its CSP (CSPj) is replicated into another agent or not. If not, it assigns
CSPj to Agent Ai by adding it to List(Ai) (Line 6-7). If all neighbors CSPs are
replicated into agents other than Ai, Agent Ai will not have any additional CSP
(its CSPadd remains empty during the DisCSP resolution). After replicating
CSPj into Agent Ai, Dispatcher Agent deletes CSPj from the list of unassigned
local CSPs (Line 8). This process is repeated until replicating all the local CSPs
of failed agents (obtaining an empty list of unassigned CSPs).

Fault Tolerance in DisCSPs 5

3.4 Merging Process

The Merging algorithm (Algorithm 4) is executed by Agent Ai having at least
one replicas of a failed agent CSP. The goal is to merge CSPs into a single one.

Algorithm 4: MergingCSPs

Input: CSP (Aj) : CSP of failed agent
1 V ariables(Ai)← V ariables(Ai) ∪ V ariables(Aj);
2 IntraC(Ai)← IntraC(Ai) ∪ IntraC(Aj) ∪ InterC(Ai, Aj);
3 InterC(Ai, Ak)← InterC(Ai, Ak) ∪ {InterC(Aj , Ak 6=i)};

Agent Ai starts this process by merging its variables with those of Aj by
adding them to its variables list (Line 1), as well as its list of constraints: it
updates its intra-agent constraints (IntraC(Ai)) by adding to it intraC(Aj) list
and interC(Aj , Ai) list that connect Ai to Aj (Line 2). The rest of inter-agent
constraints of Aj (interC(Aj , Ak)) are added to the inter-agent constraints list
of Ai (Line 3).

After merging CSPs, Agent Ai updates its neighbors list by adding Agent
Aj neighbors to its neighbors list, and informs them that it supports Agent Aj

CSP. To transmit this information, Agent Ai sends MergeCSP (Ai, Aj) message
to Agent Aj neighbors. Receiving this message, agents update their neighbors
list by removing Agent Aj and replacing it by Agent Ai.

4 Hypothesis and experiments

This section presents several hypothesis used to realize experiments (4.1) and
obtained results (4.2).

4.1 Hypothesis

During the experiments, DisCSPs are randomly generated having as parame-
ters 〈m,n, d, p〉 such as: (i) m is the number of agents, (ii) n is the number of
variables for each agent with d as a domain size, (iii) p is the hardness of each
DisCSP constraint. The generated DisCSPs are presented as connected graph.
During Multi-ABT execution, failures are simulated either before receiving a
first message, or just after sending a first solution. An agent has 10 seconds to
reply to a Check message, otherwise, it will be considered as a failed one. This
interval is sufficient to give an agent time to interrupt its behavior and respond
to Check message.

To evaluate our proposed approach, results are compared by increasing the
number of failed agents, and the number of agents. The comparison is done ac-
cording to: the number of exchanged messages to solve the DisCSP and to detect
and handle the failures, and the CPU time calculated, from the beginning of the

6 F. Chakchouk et al.

DisCSP solving to the end of the slowest agent behavior, and from the detection
of a failure until the resumption of the DisCSP resolution. Results presented in
the next section concern DisCSP generated with parameters 〈m, 4, 4, 0.5〉.

4.2 Experiments and results

This section presents results obtained by varying the number of failures. Exper-
iments are done with JADE multi-agent platform. Results of simulations were
obtained on a computer equipped with 2.4 GHz Intel Core i7 and 8GB of RAM.
The number of instances is 50 for each experiment. In theory, by increasing the
number of failed agents, the number of messages exchanged decreases, since the
number of communicating agents decreases. Also, the total CPU time increases.
In fact, the time spent to detect and handle the failures is an extra time added to
the initial one. Through these experiments, we aim to validate these hypothesis,
and to improve results obtained by Chakchouk et al. [1].

Table 1. DisCSP solving number of Messages

hhhhhhhhhhhhhhhhFailed agents number

Agents number
4 6 8 10 12

1 failure
Multi-ABT 64.35 428.82 1394.75 2506.2 4237.6
Additional 40.7 26.7 41.2 68.4 118.9

2 failures
Multi-ABT 52.3 414.15 1262.15 2770.71 5358.4
Additional 27.5 21.15 38.45 64.75 105.42

3 failures
Multi-ABT 50.07 366.25 1163.2 2305.7 4140.17
Additional 16 18.25 34.05 51.7 88.64

4 failures
Multi-ABT - 203.47 868.95 2243.3 5200.55
Additional - 14.73 28.35 51.45 89.1

6 failures
Multi-ABT - - 523.05 1661.75 4348.9
Additional - - 23 35.2 53.4

8 failures
Multi-ABT - - - - 3252.44
Additional - - - - 39.45

Table 1 presents the impact of the failed agent’s number variation on the
exchanged messages number. It contains the number of solving messages (Multi-
ABT messages) in presence of failures, and the number of exchanged messages
to detect and handle failures (additional messages). We can observe that, in
terms of the number of exchanged solving messages, the number decreases by
increasing the failed agents number. In fact, merged CSPs number increases by
increasing the number of failed agents. Then, the number of inter-agent con-
straints decreases, and each delegated agent has fewer neighbors with whom it
communicates.

Note also that the number of additional messages decreases by increasing
the number of failed agents. In fact, the most exchanged message is the checking
message Check. Since the number of failures increases, the number of replies

Fault Tolerance in DisCSPs 7

to it, by sending Active message, decreases. In addition, if an agent is active,
it can receive a Check message several times from the same agent. However,
once declared failed, no more Check messages are sent to it. As after merging
of CSPs, the diffusion of the NewCSP message decreases with the increase of
failed agents number.

Table 2. DisCSP solving CPU time

hhhhhhhhhhhhhhhhFailed agents number

Agents number
4 6 8 10 12

1 failure
Total CPU (sec) 21.44 23.53 27.24 32.65 41.2

Additional CPU (sec) 1.2 1.32 2.21 4.14 5.35
Dispatching CPU (10−3sec) 2.75 2.64 3 3.05 3.55

2 failures
Total CPU (sec) 29.35 27.75 36.37 30.01 34.69

Additional CPU (sec) 1.32 1.87 2.78 2.91 5.81
Dispatching CPU (10−3sec) 4 5.26 7.06 6.88 9.44

3 failures
Total CPU (sec) 31.53 35.14 37.94 39.07 47.85

Additional CPU (sec) 2.72 2.82 2.93 3.51 4.71
Dispatching CPU (10−3sec) 4.56 6.42 7.95 10.2 11.5

4 failures
Total CPU (sec) - 42.24 38.97 43.29 53.45

Additional CPU (sec) - 3.12 3.4 3.56 6.29
Dispatching CPU (10−3sec) - 8.89 9.9 11.84 13.6

6 failures
Total CPU (sec) - - 59.97 56.88 73.59

Additional CPU (sec) - - 4.34 3.93 8.05
Dispatching CPU (10−3sec) - - 12.9 16.21 25.82

8 failures
Total CPU (sec) - - - - 91.18

Additional CPU (sec) - - - - 11.49
Dispatching CPU (10−3sec) - - - - 32.8

Table 2 shows the variation of the CPU time calculated from the beginning
of the DisCSP solving to the end of the slowest agent behavior (total CPU),
by increasing the number of failed agents. Also, it contains the CPU time spent
to detect and handle failures (additional CPU), and that spent by Dispatcher
Agent to replicate failed agents’ CSPs (dispatching CPU). We observe that by
increasing the number of failed agents, the additional CPU time increases. In
fact, the detection of one more failure requires an additional exchange and wait-
ing for messages. During the replication process, the Dispatcher Agent browses
all the CSPs of failed agents and all their neighbors, which explains the increase
of the dispatching CPU by increasing the number of failures.

The increase of these CPU times, as well as the resumption of the resolution
after failures detection, generate the increase of the total CPU time. In fact,
after merging CSPs, the delegated agents reproduce all their local solutions, and
all the agents resume the DisCSP resolution from the beginning.

The obtained results show that additional processes produce an increase in
terms of CPU time, but the additional CPU time is almost negligible compared

8 F. Chakchouk et al.

to the total CPU time spent to solve the DisCSP. These processes, also, produce
a decreasing of the exchanged messages number. The most important is that at
the end of DisCSP solving, we obtain a solution if it exists.

5 Conclusion

This paper describes an approach, which is applied on Multi-ABT, to solve a
DisCSP if more than one agent fail. This method is based on the replication of
local CSP of each failed agent : each local CSP of failed agents has a replicas in
another active agent. If an agent fails, its neighbor, which owns its CSP replicas,
supports it by merging the replicas with its own CSP. This leads to obtain a new
local CSP. The changes are done only in a local CSP, i.e. the global DisCSP is
still the same one.

Experiments results show that this approach give expected results (a solution
if it exists, otherwise no solution). Also, they show that our method increases in
term of CPU time, but decreases in term of exchanged messages. This approach
can be adapted to be applied with other algorithms than Multi-ABT. The next
step of this work will be try other kind of failures, such as the presence of
malicious or liar agent. These failures introduce the trust and reputation notion
between agents [7].

References

1. F. Chakchouk, J. Vion, S. Piechowiak, R. Mandiau, M. Soui, and K. Ghedira. Repli-
cation in fault-tolerant distributed CSP. IEA/AIE 2017, Springer, 2017.

2. S. Ductor, Z. Guessoum, and M. Ziane. Adaptive replication in fault-tolerant multi-
agent systems. In Proceedings of International Conference on Intelligent Agent
Technology, pages 304–307, 2011.

3. A. Fedoruk and R. Deters. Improving fault-tolerance by replicating agents. In
Proceedings of the First International Joint Conference on Autonomous Agents and
Multiagent Systems: Part 2, pages 737–744, 2002.

4. Z Guessoum, JP Briot, and N Faci. Towards fault-tolerant massively multiagent
systems. In International Workshop on Massively Multiagent Systems, pages 55–69.
Springer, 2004.

5. S Hägg. A sentinel approach to fault handling in multi-agent systems, pages 181–195.
Springer Berlin Heidelberg, 1997.

6. K. Hirayama, M. Yokoo, and K. Sycara. An easy-hard-easy cost profile in dis-
tributed constraint satisfaction. Information Processing Society of Japan journal,
pages 2217–2225, 2004.

7. T.D Huynh, N.R Jennings, and N.R Shadbolt. An integrated trust and reputation
model for open multi-agent systems. Autonomous Agents and Multi-Agent Systems,
pages 119–154, 2006.

8. A.S. Tanenbaum and M.V Steen. Distributed Systems: Principles and Paradigms
(2Nd Edition). Prentice-Hall, Inc., 2006.

