
definition

2 Julien Vion & Sylvain Piechowiak
Noname manuscript No.
(will be inserted by the editor)

From MDD to BDD and Arc consistency

Julien Vion & Sylvain Piechowiak

Abstract In this paper, we present a new conversion of multivalued decision diagrams
(MDD) to binary decision diagrams (BDD) which can be used to improve MDD-based fil-
tering algorithms such as MDDC or MDD-4R. We also propose BDDF, an algorithm that
copies modified parts of the BDD “on the fly” during the search of a solution, and yields
a better incrementality than a pure MDDC-like approach. MDDC is not very efficient
when used to represent poorly structured positive table constraints. Our new represen-
tation combined with BDDF retains the properties of the MDD representation and has
comparable performances to the STR2 algorithm by Ullmann [37] and Lecoutre [22].

1 Introduction

The Constraint Satisfaction Problem (CSP) is an extremely versatile generic model for
combinatorial problems and one of the most studied NP-complete problems. Problems are
decomposed into constraint models, i. e., hyper-graphs whose vertices are variables and
hyper-edges represent constraints that define the allowed or forbidden instantiations of
variables they are connected to. The CSP consists of deciding whether an instantiation
of all variables that satisfies all constraints, i. e., a solution, exists. The contents of this
article also apply to the NP-hard Constraint Optimization Problem (COP). The COP is
to find an optimal solution to a constraint model, i. e., that maximizes or minimizes the
value of one variable.

CSP and COP are traditionally solved using a complete, systematic depth-first search
algorithm. At every search node, the problem is filtered: values that cannot appear in
any solution, i. e., inconsistent values, are removed from the domains of the variables [5].
Inconsistent values are detected using properties that can usually be checked in reasonable
time and space. This process is usually called propagation. What we want is the best trade-
off between the complexity of the propagation process, and the complexity of the search.

Consistency properties are usually defined at the constraint level. Constraints are
propagated one by one until a fix-point is reached, i. e., no inconsistent value can be
identified by any constraint. Arc consistency (AC) is obtained when, for each constraint
in the model, algorithms are able to detect all values that are inconsistent w.r.t. the
constraint. Although arc consistency has been historically defined on binary constraints
defined in extension only [29, 26], modern solvers are rather based on more versatile generic
propagators of any arity [20]. The positive table constraint is defined in extension, i. e., as
a list of allowed instantiations. Such a list forms a relation, akin to a table in a relational

Université de Valenciennes et du Hainaut Cambrésis
LAMIH CNRS UMR 8201
E-mail: {julien.vion,sylvain.piechowiak}@univ-valenciennes.fr

From MDD to BDD and Arc consistency 3

database [12]. It is an important constraint type which appear in numerous models (e. g.,
database, configuration) and has been very much studied recently [37, 22, 24, 27].1 They
are the most natural generalization of “historical” 1970s–80s binary constraints to the
non-binary case.

One important feature for propagating constraints efficiently is incrementality. Indeed,
in order to reach a fix-point during constraint filtering, and while exploring the search space
using a DFS, the propagation algorithm will be called a very large number of times on the
same relation. Avoiding to repeat similar work as much as possible is mandatory for per-
formance. This requires to design algorithms and data structures that have incrementality
properties. This is usually not trivial as, during the construction of the DFS, backtracks
will occur, and the data structures used will have to be backtracked as well efficiently.
One key data structure used to implement backtrackable data is the sparse set [7]2.

If the relation can be represented by a “flat” positive table of reasonable size, the refer-
ence algorithm with the best simplicity vs. efficiency ratio is probably STR2 [22], although
theoretically more advanced procedures exists, such as STR3 [24] or AC5TC [27]. Recently,
Compact Table, a heavily optimized variant based on bit vectors, has been proposed [13].
The idea behind STR is to filter the table before the search for supports: invalid lines
are removed and will not be considered on the current branch of the search tree. When
a backtrack is required by the search process, a simplified form of sparse set is used to
restore the removed lines in constant time. STR2 also avoids to control variables that
are not modified between two calls to the algorithm, and stops the search for supports of
variables whose entire domain has been proved to be consistent.

An efficient approach to handle large tables is to compress them, using e. g., Tries [18]
or multivalued decision diagrams (MDD) [9]. Such data structures can represent an expo-
nential number of instantiations in polynomial space. MDD can thus represent relations
such as sliding-sum/sequence in polynomial space [4, 32]. They can also represent “un-
rolled” finite-state automatons (i. e., the regular global constraint [34]). Handling relations
with MDD is a very promising approach, as Cheng and Yap [9] show with their MDDC
algorithm. MDDC uses sparse sets to label invalid vertices in the MDD, which brings
incrementality to the algorithm. Gange, Stuckey, and Szymanek [16] and Perez and Régin
[33] have already shown that the original algorithm could be improved. In this article,
we show how a simple conversion of a MDD to a binary decision diagram (BDD) [8] can
significantly improve the performances of MDD-based algorithms. Indeed, our represen-
tation has a much finer grain than a classic MDD implementation, which allows to reduce
the raw size of the data structure and to achieve finer incrementality. We designed two
algorithms, namely BDDC23 and BDDF. The former is a direct adaptation of MDDC
that operates on our BDD conversion. We show both formally and experimentally the
improvement of BDDC2 over MDDC. BDDF was designed to improve the incrementality
of BDDC2 even further, in a similar way as Perez and Régin [33] did directly on MDD
in parallel to this work. This is allowed by a better exploitation of the data provided by
coarse-grained propagation queues, and on-the-fly filtering of the BDD inspired by STR2.

2 Definitions and notations

Definition 1 (Variable, domain, instantiation, constraint) A constraint model con-
sists of a pair (X , C), where:

1 Negative table constraints have received much less attention but are reasonably handled by
generic AC algorithms such as AC-3rm [23] and efficient indexation of the table.

2 Note that sparse sets can only be used when all operations on the set are monotonic on a branch
of the search tree, i. e., items are only added along the whole branch, or removed along the whole
branch.

3 The name BDDC was already used by Cheng and Yap [10] to denote a preliminary version of
MDDC restricted to binary domains.

4 Julien Vion & Sylvain Piechowiak

X is a set of n variables; each variable X ∈ X is defined on a domain dom(X);
C is a set of e constraints; each constraint C ∈ C involves at most k variables vars(C) ⊆

X and defines the set of at most λ allowed instantiations of these variables.
An instantiation I of a set of variables X binds each variable of X to one value from

its domain.

In this article, we consider that all domains are discrete and contains at most d values.
An instantiation is said to be valid when it binds variables to values from their domains.
The tightness (≥ t) of a constraint is usually defined as the proportion of instantiations
forbidden by C w.r.t. the number of valid instantiations of vars(C). In this article, we will
rather use the looseness metric (≤ l), defined as the proportion of instantiations allowed
by C w.r.t. the number of valid instantiations. We have l = 1 − t and λ ≤ ldk.

Definition 2 (Arc Consistency, support) Let C be a constraint, X ∈ vars(C) and
v ∈ dom(X). A support of v w.r.t. C is a valid instantiation of vars(C), allowed by C, that
binds X to v. v is arc consistent (AC) w.r.t. C iff there exists a support of v w.r.t. C.

Enforcing arc consistency on a constraint C consists of removing all values from the
domains of the variables of vars(C) that are not AC for C. This process is called a constraint
propagation or a revision. Applying arc consistency on a constraint model consists of
propagating all constraints that may involve non-AC values until a fix-point is reached.
For any CSP/COP model, the fix-point is unique.

Example 1 Constraint C involves variables X, Y and Z, whose domains are {a, b, c}, and
allows the following six instantiations of these variables:

tab(C) = { ⟨X = b, Y = c, Z = b⟩ , ⟨X = a, Y = b, Z = a⟩ ,
⟨X = a, Y = a, Z = a⟩ , ⟨X = c, Y = a, Z = c⟩ ,
⟨X = c, Y = a, Z = a⟩ , ⟨X = a, Y = a, Z = c⟩}

In this example, we have k = 3 variables, d = 3 values and λ = 6 allowed instantiations.
The looseness of C is l = 6/33 ≈ 22 %.

Proving that a value is arc consistent w.r.t. this constraint requires to find a support for
this value. An instantiation is allowed iff it appears in tab(C). It is valid iff all values of the
instantiation are present in the domain of the variables. Such an instantiation supports all
domain values that appear in it. In Example 1, the value b from X’s domain is supported
by ⟨X = b, Y = c, Z = b⟩. If we remove c from Y ’s domain, the instantiation is not valid
anymore: b has no other support and can be removed from the domain of X. In the worst
case, a positive table constraint allows Θ(dk) instantiations, and enumerating them to find
supports may seem impractical.

In the remaining of this article, we only consider constraints that are defined in exten-
sion as a list of allowed instantiations. However, all discussed techniques can be applied
with heterogeneous constraint types, using the most appropriate propagator for each con-
straint.

We implement our data structures using linked lists, indexed sequences (arrays), and
hash tables. In this paper, we use 1 as the base index for arrays: A[i] is the ith element of
A. For lists, we define the prepend operator “::”, e. g., 0 :: ⟨1, 2, 3⟩ = ⟨0, 1, 2, 3⟩. We will also
use the following metrics to evaluate the size of graphs: |V (G)| and |E(G)| respectively
denote the number of vertices and edges of graph G.

3 Multi-valued Decision Diagrams

This section describes MDDs, which is the data structure we build upon to represent
allowed instantiations in constraints.

From MDD to BDD and Arc consistency 5

T

T0

Λ

a

Λ

c

a

Λ

a

b

a

Λ

b

c

b

T1

Λ

a

Λ

c

a

cX

Y

Z

(a) Trie

M

M0

Λ

b

c

b

c

a

a

a

a
c

b

a

(b) MDD

Fig. 1: A Trie T (a) and a MDD M (b) that represents the table of Example 1. T0 and T1
are the same: they are merged in one node M0 in the MDD.

b c b
a a a
a a c
a b a
c a c
c a a

Fig. 2: Relation of Example 1 recursively grouped by prefix, used to build the Trie of
Fig. 1a.

A Trie (which stands for Retrieval) is a tree-based data structure that was initially de-
signed to efficiently represent and perform searches in a dictionary (a set of text strings) [15].
For our purposes, it can be used to represent the set of instantiations allowed by a con-
straint, which can then be checked in Θ(k).

Definition 3 (Trie) A Trie T representing a set of lists S can be either:

– a leaf Λ which represents the set composed of the empty list {⟨⟩},4 or
– an application T : i → T ′ such that T ′ is a Trie that represents the set of lists {τ, . . . }

such that (i :: τ) ∈ S.

A vertex in the tree represents the set of all lists sharing the same prefix. Each leaf of
the tree corresponds to an element of Tab (cf Figure 1a). A Trie performs a compression
of the table, i. e., |E(trie)| ≤ kλ (note that since the structure is tree-shaped, each vertex
except the root has exactly one ingoing edge). Constructing a Trie from a table can be
optimally performed in Θ(kλ). The trick is to “group” the table by prefix recursively,
using an efficient hash table implementation. Most functional languages (including the
Java 8 Stream API) provide a generic Θ(λ) groupBy second-order function, which allows
to implement the construction algorithm in a few lines of code. Fig. 2 gives an insight on
how the algorithm works: first, tuples are grouped according to column i = 1. Then, each
group is recursively grouped according to column i + 1. The result gives the shape of our
trie. Purely functional data structures equivalent to hash tables are typically implemented
using hash tries, adding an Θ(log d) factor5 to the operations [2].

A trie representing the worst-case “full” relation of dk instantiations (a table of kdk

cells) has
∑k

i=1 di edges. It follows that |E(trie)| ∈ O(dk) ∩ O(kλ). Compression is better
when tries represent the allowed instantiations of loose constraints (λ is relatively large,
closer to dk) as the probability that many lines share the same prefix increases.

4 For most applications, a correct rationale for Λ is that it represents the set of all relations.
5 Actually Θ(N) where N is the number of bits used to represent domain values.

6 Julien Vion & Sylvain Piechowiak

MDDs are defined similarly to Tries above. MDD allow identical sub-trees to be
merged. A MDD is thus a singly-rooted DAG (cf Figure 1b). For a same set of instantia-
tions, we have |E(mdd)| ≤ |E(trie)|. A MDD (or Trie) can be “reduced” to a minimal MDD
(i. e., such that the MDD does not contain any two identical vertices) in Θ(|E(mdd)|) by
traversing it by depth-first search (DFS) and indexing each vertex [9].6 A reduced MDD
is often called RMDD, but all algorithms in this paper can be applied whether the MDD
is fully reduced or not. MDD can also be constructed from ad hoc functions, but memo-
ization [28] (also called hash consing [1]) is often used to merge sub-trees. Perez and Régin
[32] give some insight on building MDDs efficiently from a finite state automaton or some
other functional pattern.

The table depicted on Example 1 contains 6 instantiations of 3 variables, and can
be represented using a 6 × 3 table (i. e., 18 cells), a Trie of 13 edges, or the MDD of 11
edges on Figure 1b. Interestingly, the set of all possible instantiations of 3 variables with
3 values is represented by a table of 33 = 27 lines of 3 cells each (i. e., 81 cells), a Trie of
31 + 32 + 33 = 39 edges or a MDD of 9 edges.

Although it is not formally required, the order in which variables appear along the
branches of Tries/MDD representing table of instantiations is always the same. Such
a MDD is often called an Ordered MDD (OMDD). This assumption still considerably
simplifies algorithms and usually yields smaller reduced graphs. The size of MDD (i. e.,
number of edges) is highly dependent on the chosen order. However, finding the optimal
order is NP-hard [6] and is outside the scope of this paper. To simplify our descriptions,
we consider that all MDD are ordered, but our algorithms can be generalized.

Using Tries or MDDs to represent table constraints was previously considered by e. g.,
Gent et al. [18] (for Tries) and Cheng and Yap [9] and more recently Gange, Stuckey,
and Szymanek [16] and Perez and Régin [33] (for MDDs). Gent et al.’s strategy is to
seek for supports by a DFS in a Trie, ignoring edges (and therefore skipping branches)
corresponding to non-valid instantiations. For example, one can search for a support for
X = b under the hypothesis that Y = a in the Trie T of Figure 1a. We start from the
root T and we follow the edge b as we want a support for X = b. The next edge is invalid as
Y ̸= c. There is no other available edge, so we deduce that X = b has no support and can
be deleted. Processing variables deeper in the tree is of course much more time-consuming,
so the authors propose to generate several Tries: in this way, each variable is at the top
of some Trie. However, search space exploration by DFS interacts badly with this scheme,
e. g., searching for a support for X = a under the hypothesis made by the DFS that Z = c
requires to traverse the whole leftmost sub-tree to deduce that no such support exist.

Cheng and Yap [9] developed MDDC, another algorithm specifically targeted at MDDs
(although it can be applied on Tries). Contrary to Gent et al.’s technique, MDDC does
not restart the DFS when a support is found, but traverses the whole MDD completely.
Every time a leaf is reached, all encountered values so far can be labelled as supported.
The trick is that invalid parts of the MDD are labelled and recorded so that they will
not be traversed again in the same branch of the search tree. Timestamps are used to
avoid traversing the same vertex twice in the same pass, and backtrackable sparse sets [7]
record invalid vertices and bring incrementality to the algorithm. Once the MDD has been
traversed, all values that were not labelled as supported can be safely removed from the
domain of the variables.

Algorithm 1 is an adaptation of MDDC using our notations. It requires a few param-
eters besides the MDD M : the timestamp ts is a global value which is incremented before
each call to the algorithm. Invalid is a backtrackable set which is initialized to the empty
set at the root of the DFS, and is maintained along the branches of the search tree. It can
be implemented using e. g., a sparse set. Supported and p are respectively initialized to 0

6 This complexity implies that indexing a vertex has a complexity linear in the number of outgoing
edges (i. e., does not depend on d), which can be obtained easily by using appropriately chosen data
structures, e. g., linked lists or hash tables.

From MDD to BDD and Arc consistency 7

Algorithm 1: MDDC(M , ts, Invalid, p, Supported)
input :
M is a MDD vertex that represents allowed instantiations of variables X .
ts is the current timestamp s.t. Ts[M] = ts iff M has been visited in the current run of this

algorithm and is part of at least one support.
Invalid is a set that contains MDD vertices which lead to no valid instantiations.
p is the index s.t. X [p] is the variable corresponding to the current level of the MDD.
Supported is an application of each variable of X to the set of values that have at least one support.
δ contains the level from which entire domain of all variables are supported.
output : true if and only if the MDD contains at least one support.

1 if (M = Λ) ∨ (ts = Ts(M)) then return true
2 else if M ∈ Invalid then return false
3 else
4 X ← X [p]
5 valid ← false
6 foreach i ∈ dom(X) | MDDC(M [i], ts, Invalid, p + 1, Supported) do
7 valid ← true
8 Supported(X)← Supported(X) ∪ {i}
9 if (p + 1 = δ) ∧ (Supported(X) = dom(X)) then

10 δ ← p
11 break;

/* valid is true if and only if M has at least one valid child =⇒ M is
valid. */

12 if valid then Ts(M)← ts
13 else Invalid ← Invalid ∪ {M}
14 return valid

and {} (the empty set) before each call to the algorithm. The outgoing edges of a MDD
vertex are typically implemented using an array data structure. Thus, M [i] is the “child”
vertex reached from M through edge i.

The δ variable and Lines 9–11 implement an early cutoff optimization: the idea is to
early-end the algorithm if entire domains of all variables further down in the MDD already
have been identified as supported. It is initialized to k before each call to the algorithm.

Example 2 We describe one run of MDDC on the MDD from Fig. 1b. Line 6 builds the
set of supported values of variable X by recursive calls to the MDDC function. Leftmost
branch is traversed first, down to the leaf. When the leaf is reached, we know that all values
on the branch are supported (X = b, Y = c and Z = b). The algorithm then backtracks
to the middle branch, which has values X = a, Y = b and Z = a, then backtracks to
level 2 to go trough the branch Y = a, Z = a then one backtrack to Z = c. Finally, we
backtrack to X = c, Y = a. When M0 is reached, the timestamp tells us that there exists
at least one valid vertex further down, so it is no necessary to continue to label X = c as
supported.

If we state the hypothesis Y = a, we have to traverse the MDD again to discover
supports that include this assumption. The first branch (X = b) does not allow to reach
the leaf anymore. The vertex is labelled as invalid and will not be traversed again until
the domain of Y and the Invalid set are restored to a previous state.

MDDC is often compared to STR2 [22], which operates on a flat table representation
of the relation. Indeed, although the compression obtained by MDDs is nearly always
interesting, STR2 operates two extra optimizations: when the early cutoff optimization
of MDDC only triggers when all values of every variable from some level of the MDD is
supported, STR2 allows to skip individual variables regardless of its position in the scope
of the constraint. Moreover, contrary to MDDC, STR2 takes into account information
about modified variables brought by the solver: there is no need to check the validity of
values from unmodified variables. Finally, tables used by STR2 are usually more CPU-

8 Julien Vion & Sylvain Piechowiak

cache-friendly than standard graph implementations. In conclusion, MDDC is interesting
over STR2 only when MDDs allow a high compression of the table (|E(mdd)| ≪ kλ),
which requires loose and/or very structured constraints.

Other recent work on MDD-based constraint processing includes MDDI by Gange,
Stuckey, and Szymanek [16] which implements explanation techniques as well as the in-
clusion of backtrack-stable watches to skip some search for supports. Recently, Perez and
Régin [33] developed MDD-4R, an algorithm based on GAC-4 which filters MDDs during
search. A trailing technique is used to restore deleted edges on backtrack. Both algorithms
improve the incrementality properties of MDD processing. Recent experiments, however,
by Demeulenaere et al. [13] show that even the latest MDD-4R algorithm hardly improves
on STR2 in practice and that optimizations of STR2 are still the most competitive options
on available benchmarks.7

4 An alternative representation for MDDs

Historically, Tries and MDDs have been mainly used to perform fast lookup operations,
i. e., checking whether a particular tuple is present in the data structure in Θ(k). For this
purpose, the outgoing edges of a MDD vertex are usually stored using an indexed data
structure, e. g., array or hash table. The loop at Line 6 of Algorithm 1 is described here
akin to Cheng and Yap’s version: it iterates over the domain values, and for each value we
check whether a valid child MDD exists. Consequently, known algorithms usually have a
complexity in Θ(d · |V (mdd)|) operations. If an array is used to represent outgoing edges,
which is often the case to obtain best performance for lookups, then the space complexity is
Θ(d · |V (mdd)|) as well. This complexity amounts to consider that each vertex has exactly
d outgoing edges. A glance at, e. g., Fig. 1b on page 4, encourages us to think that this
can be improved. Moreover, we found out that for MDDC – as well as other algorithms
such as Cheng and Yap’s reduce function – the lookup operation is not required: if an
appropriate data structure is used, one can replace the iteration over domain values by an
iteration over outgoing edges.

The following property is easy to show, since each vertex has at most d outgoing edges:

Property 1 For any MDD M , |E(M)| ≤ d · |V (M)|

If we carefully implement a MDDC variant, we can consider each edge of the MDD at
most once, resulting in a complexity in Θ(|E(M)|), which should be an improvement over
Θ(d·|V (M)|) according to Property 1 above. Actually, using simply linked lists to represent
outgoing edges is sufficient to obtain this behavior, but it can be improved. We consider a
binary representation of the MDD, i. e., all vertices have at most two outgoing edges. We
obtain a so-called binary decision diagram (BDD) [8] with the following semantics:

Definition 4 A BDD B representing a set of lists S can be either:

– the empty set ∅, or
– a leaf Λ which represents the set composed of the empty list, or
– a triple (i, child, sibling) where child is a BDD that represents all tuples prefixed by i

in S, and sibling is a BDD that represents the remaining tuples.

This representation is strictly equivalent, memory-wise, to using a list to represent the
outgoing edges of a vertex: simply think the “sibling” edge of a BDD vertex as the “tail”
edge of a linked list composed of (i, child) cells. On Figure 3, the “linked list tail edges”
would correspond to the dashed lines. BDDs and BDD processing algorithms are simpler
to implement than MDD, as they avoid the reference/array duality usually required to

7 Note that the instances used by Demeulenaere et al. does not include any of the heavily structured
relations described by e. g., Cheng and Yap [9] (definite state automatons, super-row density, sliding-
sum constraints…), that can only be handled by MDD or ad-hoc representations.

From MDD to BDD and Arc consistency 9

b

∅
c

∅
b

a

∅
b

∅
a

a

∅
a c

c

∅
a

∅

(a) Direct conversion from the MDD of Fig-
ure 1b…

∅
b

∅
c

∅

Λ

b

a

∅
b

∅
a

a

∅
a c

c

(b) … and after reduction of the gray ver-
tices

Fig. 3: BDD representation of the relation from Example 1. are “sibling” and → are
“child” edges. The “∅” vertex is duplicated here for readability.

Algorithm 2: MDDtoBDD(M , ts)
input : M is a MDD vertex.

ts is a timestamp s.t. T s[M] = ts iff M has been visited in the current run of this
algorithm. In this case, Last[M] contains the previously computed result.

output : A BDD vertex equivalent to M w.r.t. Definition 4.
1 if M = Λ then return Λ
2 else if ts ̸= Ts(M) then
3 Ts(M)← ts
4 v ← {}
5 foreach non-empty M [i] do
6 v ← (i, MDDtoBDD(M [i], ts), v)
7 Last(M)← v

8 return Last(M)

represent edges, and they can lead to better compression of the data structures, as we will
show later. Converting a MDD to a BDD can be done using Algorithm 2, which is quite
straightforward. Timestamps and the Last data structure are simply an implementation of
memoization [28]. The timestamp is incremented before each call to the algorithm, as for
MDDC. When a vertex is processed, the result is stored in Last and the vertex’ timestamp
is updated. If the same vertex is encountered twice in the same run of the algorithm, we
can reuse the same result from Last. This ensures that each vertex is processed only
once per run of the algorithm. Access to the Last data structure can be implemented in
constant-time, using e. g., a hash table indexed with an unique identifier for each vertex.
The hash table can also be used to replace the timestamp in order to achieve a purely
functional implementation, but the resulting algorithm is unfortunately much slower.

The order in which variables appear in the BDD will be the same as in the original
MDD. The order in which values appear depend on the order in which MDD outgoing edges
are processed on Line 5 of the algorithm, which typically is the natural (lexicographic)
order of the values. The way v is built on Line 6 actually reverses the order in which the
values appear in the BDD w.r.t. the order in which edges are processed.

Algorithm 2 runs in Θ(d · |V (M)|) assuming that the loop on Line 5 requires to iterate
over all the potential d outgoing edges of the current vertex. This can be optimized by
using a linked list or a hash table to represent outgoing edges, but as the algorithm is
typically ran only once per MDD, this is not crucial.

An example is given on Figure 3. Figure 3a is the direct conversion from the MDD
of Figure 1b. The example shows that this representation allows further reduction of the
MDD, as the two nodes labelled in gray on Figure 3a are equivalent and can be merged,
resulting in the BDD of Figure 3b. This additional reduction can be performed easily
using standard BDD reduction algorithms (e. g., from Bryant [8]). Algorithm 2 generates

10 Julien Vion & Sylvain Piechowiak

0

10

1

1

1

Λ

(a) A “standard” BDD used
to represent a relation over
binary domains

∅
0

∅
0

∅
1

Λ

1

1

∅
1

(b) Direct conversion con-
forming to Definition 4 us-
ing Algorithm 2. Gray ver-
tices can be merged…

∅
0

∅
0

∅
1

Λ

1

1

(c) … resulting in this final
BDD

Fig. 4: Comparison between standard BDD and Definition 4 BDD

for B exactly one non-terminal vertex for each edge of M , and the additional reduction
can reduce this number. If we take into account the two terminal vertices Λ and ∅, we
have the following properties:

Property 2 B is the BDD obtained by applying Algorithm 2 and possibly a reduction
algorithm to a MDD M . We have:

|V (B)| ≤ |E(M)| + 2

The additional reduction allowed by the conversion from MDD to BDD is worthy
for processing algorithms such as BDDC2 which is detailed hereafter. Let us recall that
the order in which variables are considered in the MDD has an important impact in
the size of the reduced MDD, and that finding the optimal variable order is a NP-hard
problem [6]. When the MDD is converted to a BDD, the order of the variables is kept,
so the reduction of the BDD is at least as good as that of the MDD. The quality of the
additional reduction, however, depends on the ordering of values in the domains. Indeed,
the additional reduction depicted on Figure 3b is only possible if a is after b in the domain
of Y . Would a be after c in the domain of Z, then an additional merge is possible. Finding
a way to order both variables and domains in order to reduce the size of the BDD is
probably worth investigating.

In the obtained BDD, each non-terminal vertex has two children, and terminal vertices
have none, so we have this additional property:

Property 3 B is the BDD obtained by applying Algorithm 2 and possibly a reduction
algorithm to a MDD M . We have:

|E(B)| ≤ 2 · |E(M)|

On Figure 1b, the MDD has 8 vertices and 11 edges. It can be converted to the BDD
of Figure 3b, which has 12 vertices and 20 edges.

We would like to emphasize here that the BDD obtained from Definition 4 and Algo-
rithm 2 are not equivalent to “standard” MDDs that would be used to represent relations
over binary domains, as described by e. g., Cheng and Yap [10]. Indeed, the standard def-
inition of BDD usually states that the two children of any vertex correspond respectively
to one of the two possible values of the binary domain (usually true and false). This does
not have the same semantics as our definition of a BDD, where the “child” and “sibling”
successors of a vertex have different meanings. This illustrated by Figure 4a, where a
“standard” BDD (composed of 5 vertices and 6 edges) representing a binary relation is
converted to another BDD conforming to Definition 4 (composed of 8 vertices and 12
edges). The obtained BDD can be further reduced to 7 vertices and 10 edges.

From MDD to BDD and Arc consistency 11

Algorithm 3: BDDC2(B = (i, child, sibling), ts, Invalid, p, Supported)
input : Cf. MDDC algorithm.
output : true iff the BDD contains at least one support.

1 if (B = Λ) ∨ (ts = Ts(B)) then return true
2 else if B ∈ Invalid then return false
3 else
4 X ← X [p]

// A vertex is valid if either child or sibling is valid
5 valid ← false
6 if i ∈ dom(X) ∧ BDDC2(child, ts, Invalid, p + 1, Supported) then

// Child is valid, so current vertex is valid
7 valid ← true
8 Supported(X)← Supported(X) ∪ {i}
9 if (p + 1 = δ) ∧ (Supported(X) = dom(X)) then

10 δ ← p
11 else

// Proceed to sibling, return value is not used
12 BDDC2(sibling, ts, Invalid, p, Supported)

13 else
// Child not valid, so check sibling

14 valid ← BDDC2(sibling, ts, Invalid, p, Supported)
15 if valid then Ts(B)← ts
16 else Invalid ← Invalid ∪ {B}
17 return valid

Hadzic, Hansen, and O’Sullivan [19] proposed another way to convert a MDD to a
BDD, by converting multi-valued variables to binary variables using well-known log or
direct encodings (respectively), and MDDs are converted accordingly. This results in BDDs
having either Θ(log d · |E(M)|) or Θ(d · |E(M)|) (resp.) vertices. This is worse than the
bound we obtained (cf Property 2). Srinivasan et al. [35] also propose an MDD-to-BDD
conversion using a technique very similar to log-encoding. In summary, to the best of our
knowledge, it is the first time that a linear transformation from MDD to BDD is proposed.

5 BDDC2: Arc consistency for BDD constraints

We adapted MDDC to perform on the BDD conversion of the MDD. We obtain BDDC2
(Algorithm 3).
Property 4 BDDC2 applied on a BDD B has a complexity in Θ(|V (B)|).
Proof First, we prove that BDDC2 is in O(|V (B)|).
1. Each vertex is parsed at most once thanks to the timestamp, and
2. all operations on a given vertex (i. e., each line of Algorithm 3) can be implemented in

constant-time. Sets can be implemented using sparse sets, which allow constant-time
add (Lines 8, 16) and check (Lines 2, 6) operations [7].8 We have Supported(X) ⊆
dom(X), so the set comparison operation on Line 9 can be done by checking the
domains sizes only, which can be maintained.
Now, we prove that BDDC2 is in Ω(|V (B)|): the algorithm processes every vertex in

the graph, except if it is in the Invalid set (Line 1), or if its depth is higher than δ (Line
9: this means that all variables at deeper levels have their whole domain supported) and
the variable corresponding to its depth has its whole domain supported. In the worst case,
Invalid is empty (all vertices are supported) and one domain value is only supported by
the deepest vertex in the graph. In this case, δ = k and the check on Line 9 will fail. ⊓⊔

8 Alternative implementations of sets can also be used provided they have expected performance
similar to sparse sets.

12 Julien Vion & Sylvain Piechowiak

a

cb

a

b

a b

�b

c

�c

Λ

1

∅
a

∅

b
∅

c

Λ

a

2

b

3 ∅
a b

∅
�b

c

∅
�c

Fig. 5: MDD and BDD representation of the same relation with b and c removed on
the third level. Grayed out nodes can be labelled as invalid by MDDC and BDDC2,
respectively. Vertices 1 and 2 represent the same relation, yet Vertex 1 has three outgoing
edges, two of them leading to invalid vertices. Vertex 2 has only two outgoing edges, one
of which leading to the invalid vertex 3.

BDDC2 is a clear improvement over MDDC for three reasons:

1. The time complexity is better, as we stated in the previous section. The loop of Line 6
of Algorithm 1, which iterated over domain values, is replaced by the recursive calls on
Lines 12 and 14 in Algorithm 3, which iterates over BDD vertices. As we stated in the be-
ginning of this section, it allows to turn MDDC’s complexity of Θ(d·|V (M)|) into BDDC2’s
Θ(|V (B)|), where M and B represent equivalent relations. Combining Properties 1 and 2,
we have |V (B)| − 2 ≤ |E(M)| ≤ d · |V (M)|.

Note, however, that this statement is mostly true at the top of the search tree. In-
deed, when values are removed from the domains of variables following search hypothesis,
backtracks and propagation, d might be significantly reduced. However, we show experi-
mentally in Section 7 that iterating over outgoing edges is much more efficient in practice
than over domain values. In any case, the algorithm BDDF described in the next section
was designed to address this issue.

2. BDD benefit from additional reduction, as seen on Figures 3 and 4a. Algorithm 2
transforms a MDD into a BDD such that |V (B)| = |E(M)| + 2. The obtained BDD can
then be further reduced (Property 2). Most BDD processing algorithms, including BDDC2
and BDDF discussed hereafter, have a complexity in Θ(|V (B)|). Reducing the number of
BDD vertices is the easiest way to improve the worst-case behavior of these algorithms.

3. Vertices in a BDD have a finer grain than vertices in a MDD. MDDC (resp. BDDC2)
label invalid vertices, which means that the value of |V (M)| (resp. |V (B)|) decreases along
a branch of the search tree. BDDC2 is able to label vertices more acutely, and thus skips
larger parts of the graph. An example is given on Figure 5. After one execution of MDDC,
gray nodes are labelled as invalid and will not be considered again in this branch of the
search tree. Vertex 1 cannot be marked as invalid because value a on the second level is
still valid. This will require all further calls to MDDC to check the validity of values b
and c. With BDDC2 and the BDD representation, we can label Vertex 3 as invalid, which
allows to skip both values on each execution of the algorithm in the current search tree
branch. The rationale is that under the BDD form, BDDC2 can invalid a BDD vertex if
all remaining domain values are invalid, whereas under the MDD form, MDDC can only
invalid a vertex when all children are invalid.

From MDD to BDD and Arc consistency 13

Algorithm 4: filterBDD(B = (i, child, sibling), ts, Modif , p)
input :
B is a BDD vertex which represent a set of allowed instantiations.
ts is the current value of the timestamp s.t. ts = Ts(B) iff B has already been processed in this

run of the algorithm. In this case, Last(B) contains the result of the previous computation.
Modif is the list of modified variables.
p is the index s.t. X [p] is the variable corresponding to the current level of the BDD.
output : A BDD equivalent to B with all invalid instantiations removed.

1 if (Modif = {}) ∨ (B = {}) ∨ (B = Λ) then return B
2 else if ts ̸= Ts(B) then
3 Ts(B)← ts
4 s← filterBDD(sibling, ts, Modif , p)
5 X ← X [p]
6 if i ∈ dom(X) then
7 c← filterBDD(child, ts, Modif −X, p + 1)
8 if c = {} then
9 Last(B)← s

10 else if (c = child) ∧ (s = sibling) then
11 Last(B)← B
12 else
13 Last(B)← (i, c, s)

14 else
15 Last(B)← s

16 return Last(B)

6 BDDF (BDD-Filtering)

We designed BDDF so as to bring together the advantages of both MDDC/BDDC2 and
STR, and acts as a replacement for both algorithms. The idea is to “filter” the invalid
parts of the relation, similarly to the recent algorithm MDD-4R [33] which was developed
in parallel to this work.9 Contrary to MDD-4R, we do not rely on “trailing queues” to
restore deleted parts of the graphs upon backtracking, as our software rely on functional
programming frameworks. Persistent data structures [14], sometimes called immutable,
are standard in functional programming languages such as ML, Haskell, or Scala [31].
These languages dissuade or forbid to change the content of data structures during the
execution of a program. Adding or updating information in a data structure requires to
“copy” all data, changing appropriate nodes in the process. Original data is left untouched
and can still be reached if required. Data structures are often composed of lists or trees
(or, more generally, directed acyclic graphs), and large parts of the graphs can generally
be reused instead of copied. Guarantees in the absence of side effects usually lead to less
bug-prone programming, especially when several threads or processes access the same data
simultaneously. Such data structures are useful in the context of constraint solvers, as they
allow easy implementation of backtracking, but also have nice perspectives in the design
of non-chronological backtracking and multi-core processing.

Algorithm 4 performs the filtering of a BDD, so that each remaining vertex is part of
at least one support. It is very close to the restrict operator originally proposed by Bryant
[8], but takes into account the “value” associated to vertices and the different semantics
of its “child” and “sibling” successors. Contrary to the separation problem [11], filtering
a BDD B has a complexity linear in the number of vertices and the obtained BDD B′

cannot be larger than the original (|V (B′)| ≤ |V (B)|). A “new” BDD is returned, but in
most cases original sub-graphs of the original BDD can be kept. As stated in Def. 4 on
page 7, a BDD vertex is a (value, child, sibling) triple: the new vertices are created only
on Line 13, after considering all other options.

9 We published the idea of filtering MDD in French [39] in 2013.

14 Julien Vion & Sylvain Piechowiak

B 1 2 ∅

6

b

∅
c

∅

Λ
b

5

a

3 ∅

7

b

∅
a

4

a

∅
a c

c

(a) A BDD B…

B′ 2

3

a

(b) … with Y = a
(vertices 2 and 3
are reused)

B′′ ∅

6
b a

∅
c

7

b

8

a

∅

Λ

a

(c) … or with Z ̸= c (ver-
tices 6 and 7 are reused)

Fig. 6: Filtering a persistent BDD.

The run-time of the algorithm is similar to that of STR(1), with the additional com-
pression gains brought by BDDs: removing a single vertex from the BDD is equivalent
to removing a potentially exponential number of lines in the corresponding table. Infor-
mation on modified variables is used: Modif is the set of variables which have lost values
since the last filtering operation, as STR2 does. Unfortunately, for our algorithm we have
a restriction which will be detailed later. Variables are removed from Modif when they
are encountered, during the recursive call on Line 7.10 If Modif is emptied, it means that
no variable below X has been modified. This implies that all remaining vertices are still
valid, so no more filtering is necessary and no processing is done at further levels. If a
vertex is invalid or has no children, it can be removed from the BDD and its sibling is
directly returned (Lines 9 or 15). A new vertex can be created every time a vertex is fully
processed (Line 13). However, there are many cases where no filtering is done on a valid
vertex’ child and sibling. In this case, the original vertex can be returned (Lines 10–11).

Example 3 We describe one run of filterBDD (Algorithm 4) on the BDD from Figure 6a,
under the hypothesis that Y = a. We have Modif = {Y }. ∀ vertex v, Ts(v) = 0. ts = 1.

The algorithm starts with Vertex B. Modif is not empty, current timestamp is different
from B’s timestamp, so the timestamp is updated and a recursive call is done on Line 4
for Vertex 1, which subsequently yields a recursive call for Vertex 2, and then its empty
sibling, which is returned. Algorithm continues to check Vertex 2’s child. Presence of c in
dom(X) is checked on Line 6 (this can be optimized out since we know from Modif that
X is unchanged). Recursive call is now done on Line 7 to Vertex 3.

Vertex 3’s sibling is the empty BDD which requires no processing. a ∈ dom(Y), so a
recursive call is performed on Vertex 4 with Modif = {Y } − Y = {}. End condition of the
recursive algorithm is encountered on Line 1, so we get back to Vertex 3: its child will be
unchanged. Note that this end condition saves us 4 recursive calls. Since Vertex 3’s sibling
is also unchanged, the case of Line 10 is encountered and we can return Vertex 3 directly.
We record this result in the Last data structure (Line 11). We get back to Vertex 2 in the
call stack.

Vertex 2’s sibling and child are both unchanged. Case of Line 10 is encountered again,
and Vertex 2 can be returned. We get back to Vertex 1 in the call stack.

A recursive call is done to Vertex 5, which yields a call to Vertex 3. As Vertex 3 has
already been processed in this run of the algorithm, we know from the timestamp that we
can directly return the previously computed result from Last. Back to Vertex 5, the check
10 If X /∈ Modif , there is no need to control validity of values on Line 6 for this vertex and all

its siblings. The removal of X from Modif on Line 7 can also be omitted in this case. These simple
optimizations are not included in the algorithms to improve concision and preserve readability, but
have some impact on the speed of processing.

From MDD to BDD and Arc consistency 15

Algorithm 5: seekSuppBDD(B = (i, child, sibling), ts, Supported, p, Seek)
input :
B is a BDD vertex which represent a set of supports.
ts is a timestamp s.t. ts = Ts(B) iff B has already been processed in this run of the algorithm.
Supported is an application of each variable of X to the set of values that have at least one support.
p is the index s.t. X [p] is the variable that corresponds to the current level of the BDD.
Seek ⊆ {1 . . . k} is the set of variable indices (from X) whose domain contains values that may be

unsupported.
output : Supported and Seek are updated by side effect.

1 if (B ̸= {}) ∧ (∃p′ ∈ Seek | p′ ≥ p) ∧ (ts ̸= Ts(B)) then
2 Ts(B)← ts
3 if p ∈ Seek then
4 X ← X [p]
5 Supported(X)← Supported(X) ∪ {i}
6 if Supported(X) = dom(X) then
7 Seek ← Seek − p

8 seekSuppBDD(sibling, ts, Supported, p, Seek)
9 seekSuppBDD(child, ts, Supported, p + 1, Seek)

on Line 6 is false, as Y = a. Vertex 5 can be filtered out and Vertex 3 is directly returned
on Lines 15–16. We get back to Vertex 1 in the call stack.

Vertex 1’s sibling is unchanged, but its children is now Vertex 3 instead of Vertex 5.
We have to create a new vertex B′ on Line 13. We get back to Vertex B in the call stack,
which yields a recursive call to Vertex 6. Vertex 6’s sibling is of course unchanged, on
Line 6 we detect that c /∈ dom(Y), which means that Vertex 6 has no child. Its sibling,
the empty BDD, is returned. We get back to Vertex B.

Its new child is the empty BDD. Condition of Line 8 is encountered, so B can be
filtered out and its sibling B′ is returned (Figure 6b). The call stack is now empty and
the algorithm ends.

This example is a rather good case (memory-wise), as we can obtain a filtered copy of
a BDD by generating only one new vertex B′. The hypothesis X ̸= b (resp. X = c) would
be an ever better case as it would only imply to consider Vertex 1 (resp. Vertex 2) as the
new root of the BDD. In general, changes deep in the graph are costlier. Figure 6c is the
result of the filtering of B under the hypothesis that Z ̸= c: here, six new vertices must be
created. In the worst case, deleting a vertex v may require to recreate all vertices present
in any path from the root of the BDD to v. Experiments in Section 7 show that this can
be an issue.

In some cases, two vertices can become identical after filtering (e. g., Vertices 7 and 8 on
Figure 6c), so they can be merged. However, detecting this efficiently requires to maintain
a caching data structure (e. g., a hash table) of all vertices over all branches of the search
tree, and free the cache of outdated vertices upon backtracking. The garbage collector
and “weak references” provided by the Java VM allow to implement these features quite
easily, but querying the cache at each vertex instantiation is too slow. A quick experiment
showed that this “improvement” leads to a 3 ∼ 6× slower algorithm which requires ≈ 3×
more memory than plain BDDF. Maybe this can be improved.

Once the BDD has been filtered, it only contains supports, i. e., all values in the
BDD are supported. Algorithm 5 can be called to identify all values that appear in the
BDD. Other values can be removed from the domains. This part of the algorithm is
similar to BDDC2, but since all values are valid, some optimizations can be implemented.
Timestamps are used to avoid traversing the same vertex twice (Lines 1 and 2). The Seek
set is used to early-end the traversal when supports are found for entire domains of all
variables below the current level of the BDD. It is initialized to {1, . . . , k} before each call
to the algorithm. This is similar to the δ of BDDC2 but with a finer grain, as it allows us to

16 Julien Vion & Sylvain Piechowiak

skip Lines 4–7 if all values of the current level have been found. The largest value in Seek
should be maintained so that the end condition on Line 1 can be checked in (amortized)
constant time.

BDDF consists of applying Algorithms 4 and 5 successively to detect all supports and
restrict the BDD size to bring incrementality. Unsupported values are removed from the
domain of the variables. Here follows a more detailed complexity analysis:

Property 5 The worst-case time complexity of one run of Algorithm 4 (filterBDD) for a
BDD B is Θ(|V (B)|).

During the filtering process, every vertex of the BDD is traversed at most once, thanks
to the use of timestamps. Unfortunately, the incremental complexity of BDD filtering is
not as good as for STR2: we cannot completely ignore the unmodified variables, since we
need to traverse the corresponding levels to reach deeper vertices. Value validity checks,
however, can be skipped if we know that the variable has not lost values. As each variable
can only be modified d times, each edge will trigger at most d value validity checks in one
branch of the search tree.

Property 6 The worst-case time complexity of one run of Algorithm 5 (labelling supported
values) for a BDD B is in Θ(|V (B)|).

All tests at Line 1 of the algorithm can be performed in constant time. The Seek set
can be implemented using a bit vector and a pointer on the largest value. Checks on Line 1
and 3 can thus be made in O(1). Removing any value but the largest is also O(1). When
the largest value is removed, the bit vector is parsed from the end to find the new largest
value. The vector is parsed at most once during the whole algorithm, thus an additional
amortized cost of O(k) which can be discarded.11

As Supported(X) ⊆ dom(X), the test on Line 6 can also be done by comparing cardi-
nalities. This can be done in constant time by maintaining the size of the sets.

Property 7 If all e constraints of a CSP/COP model are represented by BDDs of size less
than |V (B)| and propagated with BDDF, the worst-case time complexity of performing
all constraint propagations over a branch of the search tree is in O(ekd · |V (B)|).

On one branch of the search tree, for each of the e constraints, the filtering algorithm
can be called up to kd times, i. e., every time a value is removed from the domain of a
variable in the scope of each constraint. Although we added several incrementality features
to Algorithms 4 and 5, in the worst case, every vertex of the BDD might be traversed at
each call of each algorithm. This results in the O(ekd · |V (B)|) worst-case time complexity.

However, the number of value validity checks performed by BDDF is in O(ed · |V (B)|)
for a branch of the search tree, as we can skip checks on a level when a variable is not
modified.

We recall here the worst-case incremental complexity of STR2 which is in O(ek2dλ),
with |V (B)| ≤ kλ. STR2 performs at most O(ekdλ) value validity checks on one branch
of the search tree.

Property 8 If all e constraints of a CSP/COP model are represented by BDDs of size less
than |V (B)| and propagated with BDDF, the worst-case space complexity of performing
all constraint propagations over a branch of the search tree is O(ekd · |V (B)|).

In the worst case, filtering a single BDD may require to create O(|V (B)|) vertices, i. e.,
copy most of the BDD. Indeed, as we stated before (e. g., Figure 6c), deleting a vertex
requires to recreate all paths to the deleted vertex’ left sibling. We observe experimentally,
11 |V (B)| < k requires that the BDD is shallower than the arity of the constraint. This can happen

only when all values of the deeper variables are supported by all instantiations of the other variables,
which means that the constraint can be easily reformulated to omit these variables. Anyway, this
issue did not appear in our experiments.

From MDD to BDD and Arc consistency 17

B ∅
b

∅
c

∅

Λ
b

a

∅
b

∅
a

a

∅
a c

c

Fig. 7: Vertices in white cannot be invalidated by BDDC2 as long as the instantiation
⟨X = c, Y = a, Z = c⟩ is valid.

B ∅
b

∅
�c

∅

Λ
b

1

a

∅
�b

∅
a

a

∅
a c

c

B′ ∅
a

∅
c

a

∅

Λ

a c

Fig. 8: State of the BDD after the hypothesis that Y = a and one execution of BDDC2
(left, greyed out vertex is labelled as invalid) and BDDF (right).

however, that practical results are very far away from theoretical worst-cases. For example,
on experimental results on Figure 12, memory consumption of BDDF is at worst 3 times
more than BDDC2, where in theory it could be up to 50.

MDDC and BDDC2 implement incrementality by labelling invalid vertices, maintaining
this information down the branch of the search tree. A vertex is “valid” iff it is a leaf or
at least one edge from that vertex points to a valid vertex. This means that a single valid
instantiation can keep “alive” up to dk vertices (cf Fig. 7 for an example). BDDF improves
on this by removing individual invalid vertices, such that the number of remaining vertices
is minimal, i. e., at most k vertices per valid instantiation.

Observe Figure 8: under the hypothesis that Y = a, BDDF filters the BDD to B′.
BDDC2 keeps the original BDD B, but labels the grey vertex as invalid. Some vertices
with invalid values remain: X = b has no support and is deleted by the algorithms. It is
invalid, but node B remains because its sibling is still valid. Same for node 1. Experimental
results confirm this behavior (cf e. g., Figure 10). Moreover, BDDF takes advantage of
information about modified variables provided by the underlying propagation framework.
Efforts in modifying BDDC2 to exploit this information were unsuccessful. Indeed, using it
efficiently requires the two passes made by STR2 or BDDF: one for filtering (where we can
use information on modified variables), and one for labelling supported values. As invalid
edges remain in the BDD with BDDC2, domain validity checks must be done twice, which
slows down the process too much. Gange, Stuckey, and Szymanek [16] proposed to use
watches: a valid MDD edge is associated to each value. As long as the edge is valid, the
value has a support. This allows to skip many support searches. This technique cannot
be used with BDDF because of the new vertices created during search. Moreover, as with
STR2, the bottleneck of our algorithm is rather in the filtering process.

On the other side, BDDF requires to allocate new vertices during the filtering. Al-
though this has no impact on theoretical time complexities, memory allocations can have

18 Julien Vion & Sylvain Piechowiak

a non-negligible cost in practice, and also require to take care of de-allocation. Garbage col-
lecting is quasi-mandatory to do this properly. Spatial complexity may also be a problem
in some configurations. Experimental results hereafter show that although benchmarks
exists where BDDF is the fastest algorithm (especially on randomly generated problems),
it can be beaten by BDDC2 when domains are small, and by STR2 when the obtained
compression is low (unstructured or very tight constraints). STR2 can also have an ad-
vantage when the arity is high because of the restriction on the use of Modif we just
described.

Finally, we state that the filtering process defined for BDD can also be applied on
MDD directly, resulting in the so-called MDDF algorithm which was described in [40] (in
French, same authors). We found out that MDDF was outperformed by BDDF in almost
every aspect, so we discarded it from this article for the sake of conciseness.

7 Experiments

All algorithms were implemented using the Scala 2.11 programming language [31] and the
Concrete 3 constraint programming platform [38]. We used a Java 8 Runtime Environment
provided by the Oracle 64-Bit Server Virtual Machine. 4 GiB heap space was allowed. The
operating system uses a Linux 4.3.6-x86_64 kernel running on standard desktop computers
with Intel Core i5-3470 CPU @ 3.2 GHz and 8 GiB RAM. STR2 is used for positive tables,
and one of MDDC, BDDC2 or BDDF is used to propagate constraints defined by a MDD.
For brievety, one call to either algorithm for one constraint (i. e., a constraint propagation)
is called a revision in this section. MDDs are converted to tables or BDDs, or vice versa,
to apply the requested algorithm. The Scala language cannot handle arrays larger than
231 − 1 elements (i. e., the maximum value of a 32-bit signed integer). When converting a
MDD to a flat table, if λ is higher than this number, an out-of-memory error is thrown
even though the data might have (unlikely) been represented within 4 GiB memory using
smarter (but slower) data structures. Most problems use additional propagators for binary
or global constraints provided by Concrete 3.

The solver was carefully parameterized so that the very same branching (see below)
and propagation ordering (FIFO) strategies are used in all configurations, i. e., search trees
are strictly identical.

7.1 Randomly generated problems: mini-benchmarks

We implemented a pseudo-random MDD generator with the four parameters (d, k, λ, q)
as proposed by Cheng and Yap [9]. d is the domain size, k is the depth of the MDD,
λ is the number of tuples allowed by the MDD, and q is a “structural factor” which
defines the probability that a vertex is identical to another. Pseudo-random numbers are
obtained from the JDK’s builtin linear congruential generator. Random reduced MDD
can be generated in Θ(kλ) using Bentley and Floyd [3]’s algorithm to generate random
sets, combined with the “grouping” strategy described in Sect. 3 on page 3 and Cheng and
Yap [9]’s reduce function. The structural factor is enforced by traversing the generated
MDD and replacing each vertex with a previously encountered one of the same depth
with a probability q. Alternatively, MDD can be generated with the parameters (d, k, l, q).
We recall that l is the looseness of the constraint, i. e., the proportion of instantiations
allowed: λ = l · dk. MDD are then “flattened” to tables in Θ(kλ) to apply STR2, or
converted to BDD in Θ(d·|V (M)|) using Algorithm 2 and Bryant [8]’s reduction algorithm
to apply either BDDC2 or BDDF. The time to generate and convert data structures are
not accounted in experimental evaluations.

First, we evaluated the space required to represent a relation using either a reduced
MDD, implemented using arrays to represent outgoing edges, and its conversion to reduced

From MDD to BDD and Arc consistency 19

101 102 103

0

2

4

6

·105
k = 5, λ = 2 · 105

0 1 2 3

·106

0

0.5

1

1.5

·106
k = 5, d = 20

10 20 30 40

0

2

4

6

·106
λ = 2 · 105, d = 20

101 102 103

0

20

40

ga
in

[%
]

0 1 2 3

·106

0

20

40

60

80

10 20 30 40

0

10

20

101 102 103

0

50

100

d

m
em

[M
iB
]

0 1 2 3

·106

0

10

20

λ

10 20 30 40

0

200

400

k

MDD edges; MDD vertices; BDD vertices

BDD vertices vs MDD edges rel. gain

MDD; BDD

Fig. 9: Space required to represent a relation using a MDD or a BDD with q = 0 %.

BDD. We measured the number of vertices and edges required, as well as the actual
memory occupied by our implementations of the data structures. In this experimentation,
we generated pseudo-random MDD around the point (d, k, λ) = (20, 5, 2 × 105) and made
each parameter vary individually around it. We chose d = 20 because it was near the
average size in our bank of structured problems (cf Section 7.3). We chose k = 5 because
we wanted (in the next set of experiments) to plot the impact of varying l on the full range
from 0 to 100 %, which results in too large tables/MDDs with higher arities. Similarly,
choosing values for λ higher than 2×105 resulted in faster memory-outs with only changes
in scale on the plots.

Results are presented on Figure 9. Each point in the plots is the average over 10
generated relations. On the left column, we make d vary, keeping k and λ constants. On
the middle column, we make λ vary. Finally, on the rightmost column, we make k vary. On
the three topmost plots, we plotted the number of edges and vertices of BDD and MDD.
The most pertinent comparison is between the number of MDD edges and BDD vertices:
the difference between the two values corresponds to the additional reduction that can

20 Julien Vion & Sylvain Piechowiak

be obtained after a MDD is converted to a BDD (cf Figure 4a). BDD edges is merely a
factor 2 over BDD vertices, we chose not to plot it to improve readability. The average
relationship between MDD edges and MDD vertices is more complicated but not so much
relevant for our analysis, as no algorithm or data structure depends only on the number
of MDD vertices; the space complexity of MDD and the time complexity MDDC are both
in Θ(d · |V (M)|) and Property 1 states that |E(M)| ≤ d · |V (M)|).

We plotted the reduction gain obtained after the conversion to BDD12 separately on
the three intermediate plots. The gain seems to reach an extrema of about 70 % when the
looseness of the constraint approaches 50 %. Similarly, the gain decreases when d and k
increase (for a given value of λ). The lower plots show the actual memory consumption
of our implementations. The behavior in Θ(d · |V (M)|) of MDDs is clearly visible on the
bottom left plot: memory continues to increase linearly with d whereas the BDD imple-
mentation tends towards a constant. Our implementation of BDD is somewhat memory
consuming, because a timestamp and (constant-sized) cache data (Ts and Last that can
be spotted on Algorithms 3, 4 and 5) are associated to each vertex even when not in use.
This may be optimized out on more specific implementations, i. e., only BDDC2 is to be
implemented. One can expect up to 30 % less memory required in this case.

We then performed a mini-benchmark to evaluate the performance of our propagators
on randomly generated MDDs. In this experiment, we added a set of instances around the
point (d, k, l) = (20, 5, 10−4). Choosing a value for l implies that λ grows polynomially with
d and exponentially with k. To evaluate the incrementality properties of our algorithms,
we simulated a search tree branch by applying the following procedure 20 times: the
propagator is called, then 20 % of randomly selected values from each of 20 % randomly
selected variables are removed. Results are shown on Figure 10 for q = 0 and Figure 11 for
q = 50 %. On each figure, top 6 plots are generated using the λ parameter, and bottom 6
use the l parameter instead. Plots are organized similarly to Figure 9. Each point in the
plots is the median obtained over 50 runs with the same parameters and different pseudo-
random seeds. On plots with q = 50 %, the obtained MDD/BDD are quite small and
some measurements may become imprecise (e. g., what appears as constants on top right
plots of Fig 11 are theoretically linear with a very low slope). Unfortunately, it is hard to
generate larger data due to the complexity of the random generation algorithms.

These plots show that MDDC is greatly outperformed by BDDC2 on almost every
aspect, except memory for smaller domains. BDDF is also always faster than BDDC2
on these plots (this behavior is contradicted in further experiments, see below). BDDF
or BDDC2 are faster and less memory consuming than STR2 when λ or l is large or if
there is structure in the MDDs (q > 0 %): if the tables cannot be compressed significantly,
STR2 should be the better algorithm. However, BDDF and BDDC2 are still competitive,
whereas MDDC can become very slow when domains are too large.

7.2 Randomly generated problems: full benchmarks

Next, we performed benchmarks on fully solved problems randomly generated using the
same technique as above, plus two additional n and e parameters. n defines the number of
variables and e is the number of constraints in the problem. The problems confer to model
RB [41] and exhibit a phase transition around l = exp(−n/e · log d) if l ≥ k−1. We chose
to observe how solving performance evolves when l grows on problems near the phase
transition with (d, k) = (8, 5), then increased d and k separately to 10 and 6, respectively.
We adjusted n so that problems are not excessively hard to solve, i. e., less than 1,200 s
with highest parameters. Finally, we tested with q = 0 % and q = 50 %. To remain near
the phase transition, we have to increase e together with l. To minimize rounding errors,
we adjusted e and calculated the corresponding l according to Model RB theorems. The

12 |E(M)|−|E(B)|
|E(M)|

From MDD to BDD and Arc consistency 21

0 100 200

0

0.1

0.2

ti
m
e
[s
]

k = 5, λ = 2 · 105

0 1 2 3

·106

0

0.2

0.4

k = 5, d = 20

5 10 15 20

0

0.5

1

1.5

λ = 2 · 105, d = 20

0 100 200
0

20

40

60

80

d

m
em

[M
iB
]

0 1 2 3

·106

0

100

200

λ

5 10 15 20

0

200

400

k

20 40 60

0

0.2

0.4

ti
m
e
[s
]

k = 5, l = 5 · 10−4

0 50 100

0

0.2

0.4

k = 5, d = 20

4 5 6 7

10−4

10−2

100

l = 5 · 10−4, d = 20

20 40 60

0

50

100

d

m
em

[M
iB
]

0 50 100

0

100

200

l [%]

4 5 6 7

101

102

k

BDDF; BDDC; MDDC; STR2

Fig. 10: Time and space to filter 20 levels of a simulated search tree branch with q = 0 %
(lower is better).

branching strategy used is the dom/wdeg variable ordering heuristic coupled with random
value ordering heuristic, and geometric restarts. A timeout of 1,200 s was used. Results
are shown on Figure 12. Indicative ranges of e and λ are given.

Instead of showing the time to solve the problems, which grows exponentially when e
and l increase, we chose to plot the number of revisions per second (i. e., the number of
times a revision algorithm is executed per second), which are more readable. When a run
timeouts, the number of revisions per second performed before the timeout is kept. Let

22 Julien Vion & Sylvain Piechowiak

0 100 200

0

0.1

0.2

ti
m
e
[s
]

0 1 2 3

·106

0

0.2

0.4

5 10 15 20

0

2

4

·10−2

0 100 200

10

20

d

m
em

[M
iB
]

k = 5, λ = 2 · 105

0 1 2 3

·106

0

100

200

λ
k = 5, d = 20

5 10 15 20

10

20

k
λ = 2 · 105, d = 20

20 40 60

0

0.1

0.2

ti
m
e
[s
]

0 0.5 1

0

0.2

0.4

4 5 6 7

10−4

10−3

10−2

10−1

20 40 60
0

20

40

d

m
em

[M
iB
]

k = 5, l = 5 · 10−4

0 0.5 1

0

100

200

l
k = 5, d = 20

4 5 6 7

101

101.5

k
l = 5 · 10−4, d = 20

BDDF; BDDC; MDDC; STR2

Fig. 11: Time and space to filter 20 levels of a simulated search tree branch with q = 50 %
(lower is better).

us recall that the search tree and thus the total number of revisions is exactly the same
whichever revision algorithm is used. We also plot the memory required by each algorithm.

On these randomly generated problems, BDDF is always the fastest algorithm. When
q = 0 %, MDDC is always the slowest, except when l is very high, where it collides
with BDDC2 and STR2. This is theoretically sound as high l implies that the number of
outgoing edges of a MDD vertex is almost always equal to d. Memory-wise, BDDF and
STR2 are both high, whereas BDDC2 and MDDC are very competitive. Note that STR2
is nearly as efficient as BDDF when arity is high and looseness is low, i. e., tables are rather
small. Indeed, high arities benefit to STR2 due to its better incrementality properties, and
small random tables are not much compressed by MDD or BDD.

From MDD to BDD and Arc consistency 23

0

0.5

1

1.5

·105

rp
s

(n, d, k) = (13, 8, 5)
e = 17 . . . 67

λ = 6 554 . . . 21 845

0

0.5

1

·105

(n, d, k) = (10, 8, 6)
e = 12 . . . 51

λ = 43 691 . . . 174 180

0

0.5

1

·105

(n, d, k) = (10, 10, 5)
e = 15 . . . 57

λ = 20 000 . . . 66 667

20 40 60
0

20

40

60

l [%]

m
em

[M
iB
]

20 40 60
0

100

200

300

400

l [%]

20 40 60
0

50

100

150

l [%]

BDDF; BDDC; MDDC; STR2;

(a) q = 0 %

0

1

2

·105

rp
s

0

0.5

1

1.5

·105

0

0.5

1

1.5

·105

20 40 60
0

20

40

60

l [%]

m
em

[M
iB
]

20 40 60
0

100

200

300

400

l [%]

20 40 60
0

50

100

150

l [%]

(b) q = 50 %

Fig. 12: Propagation speed (revisions per second, higher is better) and memory required
(lower is better) to solve randomly generated problems. Each point is a median over 50
problems.

24 Julien Vion & Sylvain Piechowiak

d k λ l [%] d |V (M)| |E(M)| |V (B)|

aim 72 2 3 6.8 85.5 12.2 9 10
bdd 70 2 16 32.3 k 21.5 26 k 26 k 20 k

carseq 40 2 248 4× 1083 0.5 4.8 k 3.4 k 3.4 k
crossword 687 25 9 14.7 k 0.1 247 k 19 k 16 k

kakuro 551 9 6 49.0 k 1.3 1.8 k 861 844
mdd 44 5 7 39.5 k 50.5 1.8 k 1.7 k 1.4 k

nonograms 185 2 25 80.8 k 0.1 369 250 252
pentominoes 5 13 129 7× 10424 5× 10−4 110 k 72 k 72 k
pigeonsplus 37 8 6 1.8 M 48.3 91 46 48

proteindesign 5 328 3 9.7 k 0.6 668 k 8.2 k 6.4 k
renault 102 13 4 3.5 k 15.0 4.3 k 1.6 k 1.1 k

tsp 75 168 3 14.6 k 0.3 59 k 15 k 15 k
weirand 100 12 5 56.2 k 22.6 49 k 32 k 22 k

Table 1: Average characteristics of evaluation instances (rounded). Only the largest MDD
of each instance (in terms of |E(M)|) is accounted.

Increasing q obviously benefits to all BDD/MDD-based algorithms. The minimalist
data structures of BDDC2/MDDC result in very low memory usage in this case.

7.3 Structured problems

Concrete 3 can read problems formulated using either its own API (which was used for
random problems), XCSP 2.1 [25] or MiniZinc 2/FlatZinc [30] formats. We selected many
families of instances from various sources. Table 1 lists the different classes of instances,
number of problems in each class and average characteristics. To compute the character-
istics, we only took into account the largest relation (in terms of MDD edges) of each
instance. Problems pentominoes and proteindesign come from the MiniZinc Challenge
2013 [36]. carseq comes from the CSPLib [17] and was reformulated in MiniZinc format
for this benchmark. All other instances come from C. Lecoutre’s XCSP library [21]. nono-
grams include problems from both the MiniZinc Challenge 2012, 2013 and the XCSP
library.

The problems from the XCSP library, as well as proteindesign, are already modeled
using positive extensional constraints. We selected all instances we could find that featured
non-random, non-binary extensional constraints. bdd, mdd and wei-rand classes are ran-
domly generated but feature some structure that can be exploited by MDD/BDD (“quasi-
random” instances). Note that aim, kakuro, renault and most nonograms instances from
the XCSP library are very easy (solved in less than one second whichever propagation
algorithm is used), and measurements may be imprecise.

carseq problems are modeled using the sliding-sum global constraint. nonograms in
MiniZinc and pentominoes are modeled using the regular global constraint. These con-
straints can be converted to MDD efficiently [9, 32]. Such constructs allow to express
MDD of reasonable size that represent extremely large relations. It is also the case for the
pigeonplus instances, although these instances can barely be represented using tables.

Instances modeled with MiniZinc were solved using the search strategy specified in the
model. Other problems use dom/wdeg variable ordering heuristic with random tie-breaking,
coupled with random value ordering heuristic and geometric restarts. We measured the
total number of revisions per second (including revisions of non-MDD/BDD/table-based
constraints for heterogeneous models) and memory used by Concrete. We defined a time
limit of 1,200 s and a memory limit of 4 GiB. When a timeout occurs, we include the
revisions per second and memory used so far in the results. When a memory out occurs, we
cap the memory required for the instance to > 4 GiB and counted 0 rps. Each instance was

From MDD to BDD and Arc consistency 25

BDDF BDDC2 MDDC STR2
krps mem krps mem krps mem krps mem

aim 63 13 97 13 66 12 78 15
bdd 35 1,333 28 554 20 481 68 1,100

carseq 434 58 433 25 318 26 1 > 4,096
crossword 80 76 88 59 33 63 88 54

kakuro 5 13 7 15 6 8 5 25
mdd 191 20 177 14 93 15 41 124

nonograms 20 14 27 13 15 11 16 > 85
pentominoes 11 219 11 109 9 82 0 > 4,096
pigeonsplus 463 11 500 11 390 9 110 > 727

proteindesign 156 340 139 336 72 337 91 339
renault 31 11 43 10 29 10 27 18

tsp 524 42 383 30 284 17 558 37
wei-rand 13 751 7 323 4 312 4 437

Table 2: Average experimental results: “krps” is kilo revisions per second (higher is better)
and “mem” is memory used in MiB (lower is better). “>” means that at least one instance
ran out of memory and was counted as 0 rps and capped to 4 GiB used memory. Results
within 10 % of the best result are highlighted.

BDDF BDDC2 MDDC STR2 BDDF BDDC2 MDDC STR2
is faster than ↗ all 1,973 instances 447 hard instances

BDDF – 31 56 59 – 49 80 63
BDDC2 54 – 80 74 33 – 80 57
MDDC 32 8 – 49 10 10 – 42

STR2 31 16 34 – 33 32 51 –

Table 3: Pairwise comparison of algorithms on structured instances

run twice with different random seeds for the branching heuristic to reduce measurement
imprecision.

Table 2 shows the results. For each class of instances, we highlighted the best result
(highest rps and lowest mem), as well as results which are within 10 % of the best one.

We also made a pairwise comparison of algorithms, similarily to what is done to evalu-
ate solvers in the MiniZinc Challenge [36]: for each instance and each pair of algorithms a1
and a2, we scored 100/|i| |c| “points” for a1 against a2 if a2 errored or a1 was at least 10 %
faster (in terms of rps) than a2. |c| is the number of problem classes, |i| is the number
of instances in the current problem class. The latter factor avoids bias towards classes
for which we have a very large number of available instances. Results of this comparison
is shown on Table 3. For each pair, the “winner algorithm”, i. e., the best on a majority
of instances, is highlighted. Columns 2 to 5 include results for our full database of 1,973
instances. Columns 6 to 9 are restricted to the 447 harder instances for which at least
one algorithm errored or took more than 200 seconds to solve. Note that this rules out all
instances from classes aim, kakuro and renault which are all easy.

For example, BDDC2 is at least 10 % faster than MDDC on 80 % of instances, whereas
MDDC is at least 10 % faster than BDDC2 on 12 % of instances. Results are within the
margin of 10 % for the 8 % remaining instances. The result is similar when considering
only the hard instances (80/10 %). Concerning BDDF, we see that although it is slower
than BDDC2 on a short majority of 54 % of instances, the result is reversed to 49/33 %
when considering harder instances only.

From these tables, it seems that BDDC2 is a good compromise for problems that are
not too hard to solve. It is faster than MDDC on a vast majority of instances, both easy
and hard. This can also be spotted on Table 2: rps for BDDC2 are always greater than

26 Julien Vion & Sylvain Piechowiak

for MDDC. BDDC2 is also often faster than STR2, especially on easy instances: 74 % vs
16 %, but only 57 vs 32 % on harder instances.

STR2 is notably faster only when arity is relatively high and λ comparatively low,
i. e., constraints are tight. In this case, the lower incrementality of BDDC2 w.r.t. that of
STR2 is not compensated by the compression. It is notably the case for crossword or bdd
instances. On the other hand, highly structured relations are very badly represented by
flat tables. In this case, STR2 is extremely slow (e. g., mdd, nonograms, or renault) and
most often will not even fit into memory (e. g., for carseq, pentominoes and pigeonsplus
classes).

It is harder to tell definitely whether BDDF is a worthy improvement over BDDC2. At
a first glance BDDC2 is faster (and less memory-consuming) than BDDF on a majority
of instances, despite the better incrementality of the latter algorithm and encouraging
results on randomly generated problems. However, when considering only hard instances,
BDDF has the advantage. When we investigate specific problem classes, we see that BDDF
is notably faster than BDDC2 on mdd, proteindesign, tsp and wei-rand problems, which
seems to correllate with high domain sizes.

These results are theoretically sound. Although BDDF clearly has a better theoretical
behaviour than BDDC2, there is an non-negligible overhead in managing the extra data.
On one hand, the improved incrementality of BDDF triggers when values towards the be-
ginning of the domains are filtered from the BDDs. This is more likely to happen and have
significant impact when the domains are large. On the other hand, the improved incre-
mentality of BDDF is more likely to be witnessed on instances for which more backtracks
are required to solve.

8 Conclusion and perspectives

In this article, we presented an alternative representation of MDDs used to represent pos-
itive relations for extensional constraints, which uses BDDs instead of MDDs. We shown
that the proposed BDD data structure can compress tables better than standard MDDs.
To the best of our knowledge, it is the first time in the literature that a conversion from
MDD to BDD with potentially lower space behavior is presented. These data structures
can be used to compress the tables used to represent extensional constraints, and even
implement some global constraints such as sliding-sum or regular easily.

We adapted and presented two algorithms, BDDC2 and BDDF that exploit the ideas
from MDDC and STR2 to improve the incrementality properties of MDDC while keep-
ing the compression properties of MDDs. The two algorithms can be implemented using
coarse-grained propagation queues. We shown experimentally that BDDC2 is faster than
MDDC on a vast majority of tested problem instances, making it competitive with STR2
even when the compression is low. Memory can be worse than MDDC by a low constant
factor when the additional compression is not significant. BDDF has better incremental-
ity properties than BDDC2, at the cost of a reasonable but sometimes significant memory
overhead. Managing this extra memory can make BDDF slower than BDDC2, especially
when domain size is low.

In summary, experimental as well as theoretical results show that for relations that
are either large (loose constraints) or structured (efficiently compressed/represented as
a MDD/BDD), one should use either BDDC2 or BDDF instead of STR2. The “turning
point” is highly dependent on the implementation. BDDC2 is to be preferred over BDDF
when memory is an issue, domains are small and problems are not too hard.

On one hand, following ideas from Perez and Régin [33], BDDF can probably be
improved by exploiting fine-grained propagation queues and additional data structures
to link domain values to the corresponding vertices in the MDD/BDD. Other perspec-
tives include improving the compression by reordering variables and values, reducing the
MDD/BDDs dynamically during search, or even tailoring search strategies to lead the

From MDD to BDD and Arc consistency 27

search towards areas of the search space where the MDD/BDD are smaller. Moreover, a
more aggressive usage of hash-consing may theoretically reduce the size of data structures,
by e. g., sharing data between several similar BDDs in the same problem instances. For
BDDF, it can bring on-the-fly reduction with no worst-case complexity overhead. Despite
disencouraging preliminary results, this possibility may be worth further investigation.

On the other hand, let us recall that BDDF is a competitive algorithm that makes
use only of purely persistent/functional data structures.13 Such data structures are crucial
in the implementation of non-chronological backtracking and parallel processing, because
they do not require any synchronization. This may be the major perspective of this work.

Acknowledgments. This research was partially financed by the French Ministry of Na-
tional Education, Research and Technology, The Nord/Pas-de-Calais Region, the French
National Center of Scientific Research (CNRS) and the International Campus on Safety
and Intermodality in Transportation.

References

[1] J. Allen. Anatomy of LISP. New York, NY, USA: McGraw-Hill, Inc., 1978. isbn:
0-07-001115-X.

[2] P. Bagwell. Ideal Hash Trees. Tech. rep. EPFL, 2001.
[3] J. Bentley and R. W. Floyd. “Programming pearls: a sample of brilliance”. In: Com-

mun. ACM 30.9 (Sept. 1987), pp. 754–757.
[4] D. Bergman, A. A. Ciré, W.-J. van Hoeve, and J. Hooker. “MDD Propagation

for sequence Constraints”. In: Decision Diagrams for Optimization. Springer, 2016.
Chap. 10, pp. 183–204.

[5] C. Bessière and J.-C. Régin. “MAC and combined heuristics: two reasons to forsake
FC (and CBJ?) on hard problems”. In: Proc. of the 12th Itl. Conf. on Principle and
Practice of Constraint Programming (CP). 1996, pp. 61–75.

[6] B. Bollig and I. Wegener. “Improving the variable ordering of OBDDs is NP-complete”.
In: IEEE Transactions on Computers 45.9 (1996), pp. 993–1002.

[7] P. Briggs and L. Torczon. “An Efficient Representation for Sparse Sets”. In: ACM
Letters on Programming Languages and Systems 2.1–4 (1993), pp. 59–69.

[8] R. E. Bryant. “Graph-based algorithms for boolean function manipulation”. In: IEEE
Transactions on Computers 100.8 (1986), pp. 677–691.

[9] K.C.K. Cheng and R.H.C. Yap. “An MDD-based GAC algorithm for positive and
negative table constraints and some global constraints”. In: Constraints 15.2 (2010),
pp. 265–304.

[10] K.C.K. Cheng and R.H.C. Yap. “Maintaining generalized arc consistency on ad-hoc
n-ary boolean constraints”. In: Proc. ECAI-06. IOS Press, 2006, pp. 78–82.

[11] A. A. Ciré and J. N. Hooker. “The Separation Problem for Binary Decision Dia-
grams.” In: Proc. ISAIM. 2014.

[12] E. F. Codd. “A Relational Model of Data for Large Shared Data Banks”. In: Com-
munications of the ACM 13.6 (1970), pp. 377–387.

[13] J. Demeulenaere, R. Hartert, C. Lecoutre, G. Perez, L. Perron, J. Régin, and P.
Schaus. “Compact-Table: Efficiently Filtering Table Constraints with Reversible
Sparse Bit-Sets”. In: Proc. CP’2016. Vol. 9892. LNCS. Springer, Sept. 2016, pp. 207–
223.

[14] J.R. Driscoll, N. Sarnak, D. Sleator, and R. Tarjan. “Making Data Structures Per-
sistent”. In: J. of Computer and System Science 38 (1989), pp. 86–124.

[15] E. Fredkin. “Trie Memory”. In: Comm. ACM 3.9 (1960), pp. 490–499.
13 Note that to achieve pure immutability, the timestamp technique used in this paper should be

replaced by some sort of lookup table, which is likely to be much slower.

28 Julien Vion & Sylvain Piechowiak

[16] G. Gange, P. J. Stuckey, and R. Szymanek. “MDD propagators with explanation”.
In: Constraints 16.4 (2011), pp. 407–429.

[17] I. P. Gent and T. Walsh. CSPLib: a benchmark library for constraints. Tech. rep.
APES-09-1999, 1999. url: http://www.csplib.org.

[18] I.P. Gent, C Jefferson, I. Miguel, and P. Nightingale. “Data structures for generalised
arc consistency for extensional constraints”. In: Proc. AAAI’2007. 2007, pp. 191–197.

[19] T. Hadzic, E. R. Hansen, and B. O’Sullivan. “On Automata, MDDs and BDDs in
Constraint Satisfaction”. In: Proc. ECAI Workshop on Inference Methods based on
Graphical Structure of Knowledge (WIGSK). 2008.

[20] P. van Hentenryck, Y. Deville, and CM. Teng. “A Generic AC Algorithm and its
Specializations”. In: Artificial Intelligence 57 (1992), pp. 291–321.

[21] C. Lecoutre. Benchmarks 2.0 - XML representation of CSP instances. http://www.
cril.univ-artois.fr/~lecoutre/research/benchmarks. 2006.

[22] C. Lecoutre. “STR2: Optimized Simple Tabular Reduction for Table Constraints”.
In: Constraints 16.4 (2011), pp. 341–371.

[23] C. Lecoutre and F. Hemery. “A Study of Residual Supports in Arc Consistency”. In:
Proceedings of IJCAI’2007. 2007, pp. 125–130.

[24] C. Lecoutre, C. Likitvivatanavong, and R.H.C. Yap. “A path-optimal GAC algo-
rithm for table constraints”. In: Proc. ECAI’2012. 2012, pp. 510–515.

[25] C. Lecoutre and O. Roussel. “XML Representation of Constraint Networks, Version
2.1”. In: The Computing Research Repository arXiv: 0902.2362v1 (2008).

[26] A.K. Mackworth. “Consistency in Networks of Relations”. In: Artificial Intelligence
8.1 (1977), pp. 99–118.

[27] J.-B. Mairy, P. van Hentenryck, and Y. Deville. “Optimal and efficient filtering
algorithms for table constraints”. In: Constraints 19.1 (2014), pp. 77–120.

[28] D. Michie. “Memo Functions and Machine Learning”. In: Nature 218 (1968), pp. 19–
22.

[29] U. Montanari. “Network of constraints : Fundamental properties and applications
to picture processing”. In: Information Science 7 (1974), pp. 95–132.

[30] N. Nethercote, P.J. Stuckey, R. Becket, S. Brand, G.J. Duck, and G. Tack. “Minizinc:
Towards a standard CP modelling language”. In: Proc. CP’2007. Ed. by C. Bessière.
2007, pp. 529–543.

[31] M. Odersky et al. The Scala Programming Language. http://www.scala-lang.
org/. 2001.

[32] G. Perez and J.-C. Régin. “Efficient Operations on MDDs for Building Constraint
Programming Models”. In: Proc. 24th IJCAI. 2015, pp. 374–380.

[33] G. Perez and J.-C. Régin. “Improving GAC-4 for Table and MDD Constraints”.
In: Proc. 20th Conference on Principles and Practice of CP. Ed. by B. O’Sullivan.
LNCS 8656. Springer, 2014, pp. 606–621.

[34] G. Pesant. “A Regular Language Membership Constraint for Finite Sequences of
Variables”. In: Proc. CP’2004. Ed. by M. Wallace. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2004, pp. 482–495.

[35] A. Srinivasan, T. Ham, S. Malik, and R. K. Brayton. “Algorithms for discrete func-
tion manipulation”. In: 1990 IEEE International Conference on Computer-Aided
Design. Digest of Technical Papers. Nov. 1990, pp. 92–95. doi: 10.1109/ICCAD.
1990.129849.

[36] P. J. Stuckey, T. Feydy, A. Schutt, G. Tack, and J. Fischer. “The MiniZinc Challenge
2008–2013”. In: AI Magazine 35.2 (2014), pp. 55–60.

[37] J.R. Ullmann. “Partition search for non-binary constraint satisfaction”. In: Informa-
tion Science 177 (2007), pp. 3639–3678.

[38] J. Vion. Concrete: a CSP Solving API for the JVM. http://github.com/concrete-
cp. 2006.

From MDD to BDD and Arc consistency 29

[39] J. Vion. “Consistance d’arc par MDD-Réduction”. French. In: Actes des 9e Journées
Francophones de Programmation par Contraintes (JFPC). Ed. by C. Truchet. 2013,
pp. 323–332.

[40] J. Vion and S. Piechowiak. “Maintenir des MDD persistants pour établir la consis-
tance d’arc”. French. In: Revue d’Intelligence Artificielle 28.5 (2014), pp. 547–569.

[41] K. Xu, F. Boussemart, F. Hemery, and C. Lecoutre. “A simple model to generate
hard satisfiable instances”. In: Artificial Intelligence 171 (2007), pp. 514–534.

