Breaking Out CSPs

Julien Vion
vion@cril.univ—-artois.fr

CRIL-CNRS FRE 2499,
Université d’ Artois
Lens, France

Abstract. In this paper, we present the very efficient and unparametrized lo-
cal search algorithm called Weighted Min-Conflicts (WMC), based on Morris’
Breakout Method, and show how the relationship existing between WMC and
the dom/wdeg heuristic used with MGAC can be used to design a simple hy-
brid algorithm. An exhaustive experimentation will be performed, considering
in particular the instances used as benchmarks during the second competition of
CSP solvers. The results show how WMC and hybrid algorithms outperforms
standard Min-Conflicts, Tabu search and MGAC-dom /wdeg on various sets of
random and structured instances.

1 Introduction

Search methods usually fall into one of two main families: systematic algorithms and
local search algorithms. When dealing with discrete CSP instances, a usual approach
to solve them is to use the MGAC-dom /wdeg algorithm. MGAC is a systematic al-
gorithm which maintains Generalized Arc Consistency (GAC), a powerful inference
property, during search [9]. dom/wdeg is an adaptive variable ordering heuristic that
try to focus the search on harder parts of the problem [2]. Local search algorithms such
as Hill-Climbing Min-Conflicts [7] or Tabu Search [4] start from an incorrect, usually
randomly generated, complete assignment, and then perform an incomplete exploration
of the search space by repairing this assignment. Although such algorithms cannot gen-
erally take profit of inference algorithms such as GAC, they may be far more efficient
in terms of response time than systematic ones to find a first solution. However, they
cannot guarantee that they find a solution or prove that none exists. There has been re-
cently some effort to develop powerful hybrid algorithms, considering that the duality
of local search and backtracking search should be combined to develop superior search
methods. This as been formalized as a challenge in both satisfiability and CSP [10].

In this paper, we present Weighted Min-Conflicts (WMC), a powerful local search
algorithm designed to quickly find feasible solutions to satisfiable CSP. We show the re-
lation existing between WMC and MGAC-dom /wdeg that allows to use very naturally
WMC as an oracle to identify the hard parts of the problems, as proposed in [6].

2 Technical Background

A Constraint Network (CN) is a pair (27, €). 2 is a finite set of n variables such that
each variable X € 2" has an associated domain dom(X) denoting the set of values

Algorithm 1: updatey(X : Variable, v,;4: Value)

1 foreach C' € ¢ | X € scp(C) do
foreach Y € scp(C) | X # Y do
foreach v, € dom(Y') do
ifcheck(C\y:uy) # check(C|y:vy/\X;vold) then
L if check(Cly =,) then y(Y, vy) — (Y, vy) — wght[C]

AU AW

else W(Yv v?/) - 'Y(Yv U?/) + wght[C]

allowed for X. € is a finite set of e constraints such that each constraint C' € € denotes
the set of tuples allowed for the variables scp(C) C 2 involved in the constraint C.
The degree of a variable corresponds to the number of constraints involving the variable.
In the remaining of this article, d will denote the size of the largest domain, I5,, the
maximal degree of the variables, and r will denote the maximal arity of the constraints.
A solution to a CN is an assignment of values to all the variables such that all the
constraints are satisfied. A CN is said to be satisfiable iff it admits at least one solution.
The Constraint Satisfaction Problem (CSP) is the NP-complete task of determining
whether a given CN is satisfiable. A CSP instance is then defined by a CN, and solving
it involves either finding at least one solution or determining its unsatisfiability.

Although there also has been some interest in using Local Search techniques to
solve the CSP problem [7, 4], these algorithms have not be studied a fraction as much
as MGAC. A local search algorithm works on complete assignments: each variable is
assigned with some value, then the assignment is iteratively repaired until a solution
is found. A repair generally involves changing the value assigned to a variable so that
as few constraints as possible are violated. The initial variable assignments may be
randomly generated.

Designing efficient local search algorithms for CSP requires the use of clever data
structures and powerful incremental algorithms in order to keep track of the efficiency
of each repair. In [4], it is proposed to use a data structure (X, v) which at any time
contains the number of conflicts a repair would lead to. Algorithm 1 describes the man-
agement of v (check(C') controls whether C is satisfied by the current assignments of
scp(C)). Since each assignation has an impact only on the constraints involving the
selected variable, we can perform the selection of the pair as well as counting conflicts
incrementally, with a worst-time complexity of O(1,,4,7d) at each iteration. The space
complexity of +y is obviously in O(nd).

There are many cases where no value change can improve the current assignment
in terms of constraint satisfaction. In this case, we have reached a local minimum. The
main challenge over local search techniques is to find the best way to avoid or escape lo-
cal minima and carry on the search. Two such techniques have already been thoroughly
studied in previous works: Random Walks (with a probability p, the repair is chosen
randomly instead of being selected into the set of repairs that improves the current
assignment [7]) and Tabu Search (previous repairs are recorded so that we can avoid
repairs that lead back to an already visited assignment [4]). The local search algorithm
implementing Random Walks will be called Min-Conflicts Random Walk (MCRW) in
the remaining of this paper.

Algorithm 2: WMC(P = (2, %) : CN, maxzIterations: Integer): Boolean

1 nbConflicts «+ init P(P) ;inity(P) ;nblterations «— 0

2 while nbCon flicts > 0 do

3 select (X, v) | v(X, v) is minimal

4 Vo1q +— current value for X

5 if v(X,v) > (X, voiq) then

6 foreach C € € | C is in conflict do

7 wght[Cl++; nbCon flicts++

8 foreach Y € scp(C) do

9 | foreach w € dom(Y')do if ~check(C|y =) then (Y, w)++

10 else
11 L P — Plx—y ;nbConflicts «— v(X,v) ; updatey(X, vora)
12 L if nblterations++> maxlterations then throw Expiration

13 return true

If no solution is found after maxIterations iterations, the search is restarted with
a new initial assignment. The best value for maxIterations is highly dependent on
the size and nature of the problem. If the value is too small, the search is unlikely to
last enough to reach a solution. If the value is too high, much time may be lost in
large local minima. MCRW and Tabu search use an additional parameter, respectively
the probability p to perform a random walk, and the size of the Tabu list. Again, the
performance of these algorithms is highly dependent on these parameters.

3 The WMC Local Search algorithm

Another efficient way to escape from local minima, called the Breakout method, has
also been proposed [8]. We propose to use this method to design a local search algo-
rithm aimed to find solutions to satisfiable CSPs. The resulting algorithm, Weighted
Min-Conflicts (WMC) is described in Algorithm 2. init P generates the initial random
assignment. Line 5 detects local minima. When a local minimum is encountered, all
conflicting constraints are weighted (line 7). Updating -y is then done in O(erd). Note
that a main advantage of WMC over Tabu search or MCRW is that it involves no pa-
rameter outside of maxIterations.

Incrementing the weight of constraints permits to effectively and durably escape
from local minima. Incrementing the constraints “fills” the local minimum until another
parts of the search space are reached. Constraints that are heavily weighted are expected
to be the “hardest” constraints to satisfy, and the algorithm will try to satisfy them in
priority. Incoherent problems usually contains a smaller set of constraints that form
an incoherent sub-problem. When trying to solve such a problem, at each iteration, at
least one of the constraints of this sub-problem will be in conflict. We thus expect that
the constraints of this sub-problem to be heavily weighted. This observation has also
be done recently on graph coloring problems [3]. We show that this assertion is also
true on large real-life problems, such as RLFAP (Radio Link Frequency Assignment
Problem). scenll-f8 is the RLFAP scenll problem from which 8 frequencies were
removed. The resulting problem is unsatisfiable. It involves 680 variables and 4,103
constraints and contains at least one MUC of 28 constraints. After 50, 000 iterations of

WMC on scenll-f8. The average weight of all the 4, 103 constraints is 136, whereas
the average weight of the 28 constraints from the known MUC is 2, 590.

4 WMC and MGAC-dom /wdeg: designing an hybrid algorithm

It is well known that the main drawback of systematic backtracking strategies such as
MGAC is that an early bad choice may lead to explore a huge sub-tree that could be
avoided if the heuristic had lead to focus on a rather small, very hard or even inconsis-
tent sub-problem. In this case, the solver is said to be subject to “thrashing”: it redis-
covers the same inconsistencies multiple times. The dom /wdeg heuristic was designed
to avoid thrashing by focusing the search on one hard sub-problem [2]. This technique
is reported to work quite well on structured problems.

Mazure et al. [6] report that statistics earned during a failed run of local search can
be successfully as an oracle to guide a systematic algorithm in the search of a solution
or to extract an incoherent core. Eisenberg & Faltings [3] have designed a simple hy-
brid algorithm based on this assumption, using the weights obtained with WMC. We
propose to use directly the weights of the constraints obtained at the end of a WMC
run to initiate dom/wdeg weights. Since most complete and incomplete solvers use
restarts (by limiting to max BT backtracks or maxIterations iterations), we propose
here to launch them sequentially in turn. The different algorithms are independent and
each one keep its main advantages. If there exists a search strategy which is particu-
larly efficient for a given type of problem (i.e. local search for large or dense problems,
systematic search for unsatisfiable problems), we have only lost a limited amount of
time when considering bad search strategies for this problem. Moreover, much interest-
ing information can be kept from one run to another, even if the search fails. Outside of
the constraint weights, MGAC can determine inconsistent values or tuples of values that
can be recorded as additional constraints [5], as well as generating partial arc-consistent
assigments.

Even though WMC and MGAC-dom /wdeg do not need any additional parameter
outside of mazlIterations and max BT, tuning these was an important issue in the
design of the Hybrid algorithm. We tried to make sure that both algorithms use ap-
proximately the same amount of resources during the search by measuring the speed of
each solver internally and dynamically adapting maxzBT'. At each run, WMC is tried
maxTries times, then MGAC is tried once. After each run, maxTries and maxBT
are increased by a factor a so that MGAC eventually becomes complete. This is reached
in the worst case when max BT > d™.

5 Experiments

Experiments where run on a farm of Linux machines, each of which is equipped with 3
GHz x86-64 processors and 2 GiB of RAM. We compare the performance of MGAC-
dom/wdeg and the different local search algorithms (with GAC enforced during a pre-
processing phase), and the hybrid algorithm. The maximum iterations for MCRW and
Tabu search was fixed to 150,000, and 2,000 for WMC. MGAC-dom /wdeg imple-
ments restarts with similar parameters as the hybrid algorithm. MCRW has p fixed to

MGAC-dom /wdeg MCRW Tabu WMC Hybrid
instance |nb|solved| time solved| time |solved| time [solved| time [solved|time
qcp-qwh-bqwh|[253 248 0.78 253 0.60 253 0.41 246 0.76 247| 2.23
fapp|146 141 11.04 141 4.16 61]>600.00 131 2.37 141(119.27
shop|128 104 1.93 76| 51.65 56| >600.00 111 1.19 103] 5.98
rifap| 25 25 2.68 25 1.97 19 1.71 21 1.14 25| 17.44
other structured [321 308 0.57 272 1.45 263 1.39 297 0.51 310 2.79
rand-d>n| 94 94 3.89 31{>600.00 16 >600.00 33]>600.00 42| >600
rand-d<n|672 561 22.32 550 37.98 592 19.7 589 22.62 582] 22.41

Table 1. Results on satisfiable instances (median time shown in seconds)

pure MGAC-dom /wdeg hybrid
instance |runs|assgns| CPU Tun\ZNg:PU T%S?i-i(?(]ﬁﬁwcd;% total CPU
scenl1-f8 1| 13,596 107.9 1| 1264 1 470| 19.1 145.5
scenl1-f5 3| 68,307 713.3 2| 2583 2| 47,692| 378.6 634.3
0s-5-95-2 7] 79,599 105.8 1| 208 1| 3,148] 10.7 31.5
08-5-95-5 4] 30,262 52.1 2| 395 2| 11,372 29.2 68.7
qK-50-5-mul 7] 13,482 452.3 2] 398 2| 2,495 73.0 525.3
gK-80-5-mul| >9]>25,000|>6,000.0 2(1,666.2 2| 6,395 971.6 2,637.8

Table 2. Results on various unsatisfiable problems

0.04 and Tabu size is fixed to 30. These parameters were found to be optimal for random
problems near the threshold with 50 variables and 23 values. MCRW and Tabu search
could benefit very much from parameter adjustments specific to each problem, but this
is still an open question outside the scope of this paper.

We ran the algorithms on all instances from the Second International Solver Com-
petition [1] available in the XCSP 2.0 format. Only instances that did not involve con-
straints with arity higher than 4 (dealing with constraints of high arity efficiently would
need a non-boolean management of constraint checks [4]) and that could be proved
satisfiable by at least one algorithm are taken into consideration. Results are summa-
rized in Table 1. For each algorithm, the solved column indicates how much problems
were solved in less than 600 seconds. The time column shows the median cpu time
exhausted to solve the problems, in seconds. All these problems are of reasonable size
and are treatable with MGAC-dom /wdeg (local search algorithms are able to treat
much larger problems). There are noticeable series, where local search is superior even
though the problems are of relatively small size: shop problems (job-shop and open-
shop) and hard random problems with smaller domain sizes (d < n). Tabu and MCRW
show interest over WMC when their parameters match the right problems. In particu-
lar, random problems and qwh/qcp problems from the competition all have comparable
domain sizes and number of variables. WMC is also often the fastest to reach a so-
lution. The Hybrid approach seems to succeed in combining the advantages of WMC
and MGAC-dom /wdeg and is the approach that solves the largest number of problems,
even though it often remains the slowest.

Table 2 shows that when running our hybrid solver on various unsatisfiable struc-
tured problems, in all cases the total number of assignments and cpu time for MGAC-
dom /wdeg is much lower when used in cooperation with WMC than alone. This shows

the effectiveness of the weight transfer. On hardest problems, the overall CPU Time is
also better.

6 Conclusion and future work

In this paper, we presented Weighted Min-Conflicts, a local search algorithms that builds
over Morris’ Breakout Method. We studied the computing costs of iterating local search
algorithms by using incremental evaluation of the repairs to perform at each iteration.
We introduced an hybrid approach between systematic and local search, respectively
represented by the MGAC-dom /wdeg and WMC algorithms. We shown the relation-
ship existing between the Breakout Method and the dom /wdeg heuristic, and used this
relationship to improve the efficiency of the search.

Experiments on various available benchmarks have shown the versatility of our ap-
proach, with good results over structured instances, even though the size and the na-
ture of these are extremely variable. Our hybrid algorithm confirms results obtained by
Mazure et al. on the SAT problem [6]. Moreover, with our approach the two algorithms
are much more tied together since they both use heuristics that naturally use the same,
shared information.

Much work still has to be done around the way to use weights both in local and
systematic searches: in particular, latest refinements of constraint weighting used in
SAT solvers use advanced strategies to lower the weights of the constrains periodically
or automatically. We also believe that much more complementary information may be
learned from one run of local search.

References

1. Second International CSP Solvers Competition. http://cpai.ucc.ie/06/Competition.html,
2006.

2. F.Boussemart, F. Hemery, C. Lecoutre, and L. Sais. Boosting systematic search by weighting
constraints. In Proceedings of ECAI’'04, pages 146—150, 2004.

3. C.Eisenberg and B. Faltings. Using the Breakout Algorithm to Identify Hard and Unsolvable
Subproblems. the Proceedings of Principles and Practice of Constraint Programming CP-
2003, LNCS, 2833:822-826, 2003.

4. P. Galinier and J.K. Hao. A General Approach for Constraint Solving by Local Search.
Journal of Mathematical Modelling and Algorithms, 3(1):73-88, 2004.

5. C.Lecoutre, L. Sais, S. Tabary, and V. Vidal. Nogood recording from restarts. In Proceedings
of the 20th International Joint Conference on Artificial Intelligence (IJCAI’2007), 2007.

6. B. Mazure, L. Sais, and E. Gregoire. Boosting complete techniques thanks to local search
methods. Annals of Mathematics and Artificial Intelligence, 22:319-331, 1998.

7. S. Minton, M.D. Johnston, A.B. Philips, and P. Laird. Minimizing conflicts: a heuristic
repair method for constraint-satisfaction and scheduling problems. Artificial Intelligence,
58(1-3):161-205, 1992.

8. P. Morris. The breakout method for escaping from local minima. In Proceedings of AAAI’93,
pages 4045, 1993.

9. D. Sabin and E. Freuder. Contradicting conventional wisdom in constraint satisfaction. In
Proceedings of CP’94, pages 10-20, 1994.

10. B. Selman, H. Kautz, and D. McAllester. Ten challenges in propositional reasoning and
search. Proc. IJCAI’97, 1997.

