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Abstract. Many works in the area of Constraint Programming have
focused on inference, and more precisely, on filtering methods based on
properties of constraint networks. Such properties are called domain fil-
tering consistencies when they allow removing some inconsistent values
from the domains of variables, and bound consistencies when they focus
on bounds of domains. In this paper, we study the relationship between
consistencies introduced with respect to discrete and continuous con-
straint networks, and experiment the effectiveness of exploiting bound
consistencies on discrete instances.

1 Introduction

Many problems arising in Artificial Intelligence and Computer Science involve
constraint satisfaction as an essential component. Such problems occur in numer-
ous domains such as scheduling, planning, molecular biology and circuit design.
The methods that have been developed for processing constraints can be classi-
fied into inference and search [13]. Inference is used to transform a problem into
an equivalent form which is simpler than the original one while search is used
to traverse the search space of the problem in order to find a solution. Problems
involving constraints are usually represented by so-called constraint networks.

A constraint network is simply composed of a set of variables and of a set
of constraints. Finding a solution to a constraint network involves assigning a
value to each variable such that all constraints are satisfied. The Constraint
Satisfaction Problem (CSP) is the task to determine whether or not a given
constraint network, also called CSP instance, is satisfiable. It comes in two forms.
The first one, called discrete or finite CSP, corresponds to constraint networks
such that each variable takes its values in an associated discrete domain while
the second one, called continuous or numeric CSP, corresponds to networks such
that each variable takes its values in an associated continuous domain.

Many works in the area of Constraint Programming have focused on infer-
ence, and more precisely, on filtering methods based on properties of constraint
networks. The idea is to exploit such properties in order to identify some no-
goods where a no-good corresponds to a set of variable assignments that can
not lead to any solution. Properties that allow identifying no-goods of size 1,
which correspond to inconsistent values, are called domain filtering consisten-
cies [12]. In this paper, we focus on domain filtering consistencies that have been
introduced with respect to discrete and continuous CSP instances.
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On the one hand, when dealing with discrete CSP instances, a usual approach
to solve them is to use the MAC algorithm, i.e. the algorithm which maintains
arc consistency during search. Arc consistency (AC) means that any value occur-
ring in the associated domain of a variable X admits at least a support in each
constraint involving X. Recent works have shown that there exist promising al-
ternatives to AC, namely, max-restricted path consistency (Max-RPC) [10] and
singleton arc consistency (SAC) [11]. Max-RPC and SAC are stronger consis-
tencies than AC, that is to say, they allow identifying more inconsistent values
than AC does. Max-RPC holds when all values have at least one path consistent
support on each constraint whereas SAC holds when the constraint network can
be made arc consistent after any variable assignment. It can be useful to estab-
lish Max-RPC or SAC at pre-processing time (i.e. before search) [22, 12], but
it seems that maintaining such a strong consistency during search does require
some control about the effort performed at each step. In fact, it remains an open
issue although recent advances [1, 5, 18] show it is a direction of future research.

On the other hand, when dealing with continuous CSP instances, one has
to reason about intervals. For instance, it is possible to represent a domain by
a finite set of (disjoint) continuous intervals and to propose some adaptations
[16, 14] of the arc consistency enforcing algorithm which, otherwise, is subject to
early quiescence and infinite iterations. However, it is more usual that domains
are considered as convex, i.e. represented by a single interval. By restricting arc
consistency with respect to the bounds of each (convex) domain, new consis-
tencies can be introduced. The consistency that is based on an approximation
(in order to maintain domains convex) of projection functions for the narrow-
ing of domains is called 2B-consistency (2B) by [19] and hull-consistency by [2].
However, it requires, for each pair (C,X) composed of a constraint C and a
variable X, the existence of two functions computing the min bound and the
max bound of the set of values given by the projection over X of the set of sup-
ports of C. When such functions can not be exhibited, it is necessary to perform
some decomposition of the constraint system. Another consistency, called box-
consistency [2], exploits interval arithmetic and does not require any constraint
decomposition. It is known [9] that 2B and box-consistency match when no vari-
able occurs several times in the expression of a constraint. It is also possible to
define stronger consistencies than 2B or box-consistency by assuming that each
variable is assigned, in turn, with the two bounds of its domain and by check-
ing consistency when establishing 2B or box-consistency. Such consistencies are
called 3B-consistency (3B) [19] and bound-consistency, respectively. Finally, it
is possible to introduce a recursive definition of kB-consistencies [20] with k ≥ 2.

In the following, we will define a consistency restricted to the bounds of the
domains as a bound consistency. For example, 2B corresponds to bound AC
while 3B is a relaxation of bound SAC. The aim of this paper is to study the
practical effectiveness of exploiting bound consistencies with respect to discrete
CSP instances, as even if 2B has been integrated into some constraint logic
programming solvers [8, 15], we are not aware of any experimental comparison
involving different bound consistencies wrt finite domains.
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2 Domain Filtering Consistencies

In this section, we introduce some consistencies that allow removing some incon-
sistent values from the domains of a constraint network (CN). Such consistencies,
called domain filtering consistencies in [12], share the nice property of not mod-
ifying the structure of the network.

Definition 1. A Constraint Network P is a pair (X ,C ) where:

– X = {X1, . . . , Xn} is a finite set of n variables such that each variable Xi

has an associated domain dom(Xi) denoting the set of values allowed for Xi,
– C = {C1, . . . , Cm} is a finite set of m constraints such that each constraint
Cj has an associated relation rel(Cj) denoting the set of tuples allowed for
the variables vars(Cj) ⊆X involved in the constraint Cj.

For any variable X, min(X) and max(X) will respectively denote the smallest
and greatest values in dom(X). Note that a value will usually refer to a pair
(X,a) with X ∈ X and a ∈ dom(X). We will note (X, a) ∈ P (respectively,
(X, a) /∈ P ) iff X ∈X and a ∈ dom(X) (respectively, a 6∈ dom(X)).

A constraint network is said to be satisfiable iff it admits at least a solution.
The Constraint Satisfaction Problem (CSP) is the NP-complete task of determin-
ing whether a given constraint network, also called CSP instance, is satisfiable.
To solve a CSP instance, a depth-first search algorithm with backtracking can
be applied, where at each step of the search, a variable assignment is performed
followed by a filtering process called constraint propagation. Usually, constraint
propagation algorithms are based on domain filtering consistencies, among which
the most widely studied ones are called arc consistency, max-restricted path con-
sistency and singleton arc consistency.

Arc Consistency (AC) is the basic property of constraint networks. It guar-
antees that each value occurs in at least a support of each constraint. Algorithms
to establish AC entails removing all arc inconsistent values and can be classi-
fied into coarse-grained and fine-grained algorithms. Optimal worst-case time
complexity to establish AC is O(md2) where d is the size of the largest domain.

Definition 2. Let P = (X ,C ) be a CN, X ∈ X and a ∈ dom(X). (X, a) is
arc consistent iff ∀C ∈ C |X ∈ vars(C), there exists a support of (X, a) in C,
i.e., a tuple t ∈ rel(C) such that t[X] = a. P is arc consistent iff ∀X ∈ X ,
dom(X) 6= ∅ and ∀a ∈ dom(X), (X, a) is arc consistent.

Max-Restricted Path Consistency (Max-RPC) can be seen as a generalization
of restricted path consistency [3] and k-restricted path consistency [10] and also
as a restriction of path consistency [21]. It is defined with respect to binary
constraint networks, i.e. networks that only involves binary constraints. Max-
RPC guarantees that each value can be found a path in each 3-clique of the
network. Optimal worst-case time complexity to establish Max-RPC is O(mn+
md2 + cd3) where c denotes the number of 3-cliques in the constraint network.
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Definition 3. Let P = (X ,C ) be a binary CN, Xi ∈ X and a ∈ dom(Xi).
(Xi, a) is max-restricted path consistent iff ∀Cij ∈ C , ∃b ∈ dom(Xj) s.t. (a, b) ∈
rel(Cij) and ∀Xk ∈X |Cik ∈ C ∧Cjk ∈ C , ∃c ∈ dom(Xk) s.t. (a, c) ∈ rel(Cik)∧
(b, c) ∈ rel(Cjk). P is max-restricted path consistent iff ∀Xi ∈X , dom(Xi) 6= ∅
and ∀a ∈ dom(Xi),(Xi, a) is max-restricted path consistent.

Singleton Arc Consistency (SAC) is a stronger consistency than Max-RPC
which is itself stronger than AC. It means that SAC can identify more incon-
sistent values than Max-RPC can, and subsequently more than AC can. SAC
guarantees that enforcing arc consistency after performing any variable assign-
ment does not show unsatisfiability, i.e., does not entail a domain wipe-out.
Optimal worst-case time complexity to establish SAC is O(mnd3) [5].

To give a formal definition of SAC, we need to introduce some notations.
AC(P ) denotes the constraint network obtained after enforcing arc consistency
on a given constraint network P . AC(P ) is such that all values of P that are not
arc consistent have been removed. If there is a variable with an empty domain
in AC(P ), denoted AC(P ) = ⊥, then P is clearly unsatisfiable. P |X=a is the
constraint network obtained from P by restricting the domain of X to {a}.

Definition 4. Let P = (X ,C ) be a CN, X ∈ X and a ∈ dom(X). (X, a) is
singleton arc consistent iff AC(P |X=a) 6= ⊥. P is singleton arc consistent iff
∀X ∈X , dom(X) 6= ∅ and ∀a ∈ dom(X), (X, a) is singleton arc consistent.

Finally, [4] have proposed an extension of SAC that is called Singleton Prop-
agated Arc Consistency (SPAC). It is based on the following observation. If
(Y, b) /∈ AC(P |X=a) then it corresponds to the detection of the nogood ¬(X =
a ∧ Y = b) and we can deduce that (X, a) /∈ AC(P |Y=b). We can exploit this
inference when checking the singleton arc consistency of (Y, b) as it gives more
chances to detect an inconsistency.

Definition 5. Let P = (X ,C ) be a CN, X ∈ X and a ∈ dom(X). (X, a) is
singleton propagated arc consistent iff P̃ |X=a 6= ⊥ where P̃ |X=a is the constraint
network obtained from P by removing any value (Y ,b) of P (i.e. b from dom(Y ))
such that (X, a) /∈ AC(P |Y=b). P is singleton propagated arc consistent iff ∀X ∈
X , dom(X) 6= ∅ and ∀a ∈ dom(X), (X, a) is singleton propagated arc consistent.

It is possible to define a bound version for any domain filtering consistency
Φ as follows.

Definition 6. Let P = (X ,C ) be a CN. P is bound Φ-consistent iff ∀X ∈X ,
dom(X) 6= ∅ and both min(X) and max(X) are Φ-consistent.

On the other hand, 2B and 3B [19] are consistencies that have been intro-
duced wrt continuous constraint networks. 2B(P ) denotes the constraint network
obtained after enforcing 2B on a given constraint network P and 2B(P ) = ⊥
indicates that there is a variable with an empty domain in 2B(P ).

Definition 7. P = (X ,C ) is 2B-consistent iff ∀X ∈ X , dom(X) 6= ∅ and
both min(X) and max(X) are arc consistent. P is 3B-consistent iff ∀X ∈ X ,
dom(X) 6= ∅ and both 2B(P |X=min(X)) 6= ⊥ and 2B(P |X=max(X)) 6= ⊥.
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Algorithm 1 seekSupportArc(C : Constraint, X : Variable, a : Value) : boolean
1: t← ⊥
2: while t 6= > ∧ C(t) = false do
3: t← setNextTuple(C,X, a, t)
4: return t 6= >

Algorithm 2 revise(C : Constraint, X : Variable) : boolean
1: domainSize← |dom(X)|
2: while |dom(X)| > 0 ∧ ¬ seekSupportArc(C,X,min(X)) do
3: remove min(X) from dom(X)
4: while |dom(X)| > 1 ∧ ¬ seekSupportArc(C,X,max(X)) do
5: remove max(X) from dom(X)
6: return domainSize 6= |dom(X)|

Clearly, 2B-consistency corresponds to bound AC while 3B-consistency is a
relaxation of bound SAC since for each pair (X,a) with a = min(X) or a =
max(X), 3B-consistency requires that 2B(P |X=a) 6= ⊥ whereas bound SAC re-
quires that AC(P |X=a) 6= ⊥. We can also observe (see next sections) that a
consistency and its bound version admit the same optimal worst-case time com-
plexity. For example, establishing AC or 2B is O(md2) while establishing SAC,
bound SAC or even 3B is O(mnd3). This statement seems to be in contradiction
with the optimality of 2B-consistency and 3B-consistency algorithms which is
O(md) [19] and O(mnd2) [7], respectively. However, it is then assumed that all
constraints are basic, that is to say, that for each constraint C, it is possible to
find two functions that compute in bounded time the min bound and the max
bound of the domain of any variable involved in C.

One nice advantage of exploiting bound consistencies is that space complexity
can be very affordable. Indeed, it is possible to reduce the space required by some
algorithms by a factor d or even d2 as we can just generate data structures wrt
two bounds. Further, if convex domains are considered, i.e. domains are such
that all values between the min and the max bounds belong to the domain, then
a constraint network can be represented in O(n + m). It can be very useful for
networks involving variables with large domains as for some scheduling instances.

Finally, remark that we have ignored in this paper the adaptation of (nu-
meric) consistencies such as box-consistency and bound-consistency wrt discrete
CSP instances.

3 2B (Bound arc consistency)

Arc consistency (AC) is the most studied and used local consistency. Algo-
rithm 4 is the bound adaptation of the coarse-grained arc consistency algorithm
AC3 [21]. It just calls Algorithm 3 with the set of variables of the given constraint
network as a second parameter. This second algorithm allows establishing bound
arc consistency of the given constraint network by initializing a set Q with some
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Algorithm 3 2B (P = (X ,C ) : CN, S : set of Variables)
1: Q← {(C,X) | C ∈ C ∧X ∈ vars(C) ∧ ∃Y ∈ S ∩ vars(C)|Y 6= X}
2: while Q 6= ∅ do
3: pick and delete (C,X) in Q
4: if revise(C,X) then
5: Q← Q ∪ {(C′, X ′) | X ∈ vars(C′) ∧ X ′ ∈ vars(C′) ∧ C 6= C′}
6: end while

Algorithm 4 2B (P = (X ,C ) : CN)
1: 2B(P ,X )

arcs and then performing successive revisions until a fix-point is reached. Algo-
rithm 3 has been introduced as it is useful later in the paper. But, assuming
that no unary constraint is allowed, one should observe that the call 2B(P,X )
(line 1 of Algorithm 4) involves the following standard initialization of the set
Q (line 1 of Algorithm 3):

Q← {(C,X) | C ∈ C ∧X ∈ vars(C)}

Hence, initially, all arcs (C,X) are put in a set Q. Then, each arc is revised
in turn, and when a revision is effective (at least one value has been removed),
the set Q has to be updated. A revision is performed by a call to the function
revise(C,X), depicted in Algorithm 2 and entails removing values at bounds
of dom(X) that have become inconsistent with respect to C. The algorithm is
stopped when the set Q becomes empty. Remark that when a revision of an
arc (C,X) is effective, it is necessary to take into account the arcs of the form
(C ′, X) (with C 6= C ′) since the consistency of the new bound(s) of dom(X) is
not guaranteed wrt C ′. The function seekSupportArc, depicted in Algorithm 1,
determines from scratch whether or not there exists a support of (X, a) in C.
It iteratively calls the function setNextTuple which returns either the smallest
valid tuple t′ in C such that t ≺ t′ and t′[X] = a or > if it does not exist. Note
that C(t) must be understood as a constraint check and that C(⊥) returns false.

Finally, Algorithm 4 can also be seen as an adaptation of the procedure IP 1
proposed in [19] where it is assumed that constraints are basic. Also, a variant
with a constraint-oriented propagation scheme can be found in [7].

Proposition 1. Applied to binary constraint networks, Algorithm 4 admits a
worst-case time and space complexity in O(md2) and O(m), respectively.

Proof. Each arc (C,X) may enter d times in Q to be revised [21, 7, 6]. When a
revision entails no removal, at most 2×d constraint checks are performed. When
some removals occur, there are at most d additional constraint checks per value
removed. For each arc, we then obtain 2×d×d+d×d as an upper bound of the
global number of constraint checks. As there are 2×m different arcs, we obtain
a worst-case time complexity in O(md2). On the other hand, the only structure
used by the algorithm is the queue Q which is O(m). �
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Algorithm 5 seekSupportPath(Cij : Constraint, Xi : Variable, a : Value) : bool
1: for each value b ∈ dom(Xj) s.t. Cij(a, b) do
2: for each variable Xk s.t. (Xi,Xj ,Xk) forms a 3-clique do
3: for each value c ∈ dom(Xk) do
4: if Cik(a, c) ∧ Cjk(b, c) then
5: continue loop 2:
6: end for
7: continue loop 1:
8: end for
9: return true

10: end for
11: return false

It is interesting to note that even if last supports are recorded as with an
underlying optimal arc consistency technique such as AC2001/3.1, the worst-
case time complexity remains O(md2) although one could have expected a better
complexity as bound consistencies only consider the min and the max values.

4 2B+ (Bound max-restricted path consistency)

Max-Restricted Path Consistency (Max-RPC) [10] is one of the most promising
local consistencies. Max-RPC is stronger than arc consistency, restricted path
consistency [3] and k-restricted path consistency [10] but weaker than singleton
arc consistency. In this section, we propose a bound adaptation of Max-RPC in
the context of a coarse-grained algorithm. Actually, as this adaptation, denoted
2B+, does not guarantee that each bound has a path consistent support with
respect to each constraint, it should be viewed as an opportunistic algorithm
that is simple to define and implement.

The algorithm 2B+ is obtained from 2B by simply replacing, in function
revise, calls to function seekSupportArc by calls to function seekSupportPath
which is described by Algorithm 5. The function seekSupportPath returns true
(line 10) iff the given value has a path consistent support on the given constraint.
In order to guarantee that the resulting constraint network is (at least) arc
consistent, we have to replace C 6= C ′ by (C 6= C ′ ∨ X 6= X ′) in line 5 of
Algorithm 3. It means that, when the revision of an arc (Cij , Xi) is effective,
it is necessary to take into account the arc (Cij , Xj). Indeed, let us suppose
that (Cij , Xj) has been revised and that a = min(Xi) has been found as a
path consistent support for b = min(Xj) requiring a value c for a variable Xk.
Next, some revision is performed that entails the removal of (Xk,c) and (Cij , Xi)
is revised. Imagine that a = min(Xi) has no more path consistent support in
dom(Xj) (b = min(Xj) was one such support but it required c that has been
removed) then a is removed. If the arc (Cij , Xj) is not added to Q, then it is
possible that propagation finishes although (Xj ,b) is not supported by Xi.
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Algorithm 6 3B-X(P = (X ,C ) : CN)
1: P ← 2B(P ,X )
2: repeat
3: Pbefore ← P
4: for each X ∈ X do
5: domainSize← |dom(X)|
6: while |dom(X)| > 0 ∧ ¬ check2B-X(P ,X,min(X)) do
7: remove min(X) from dom(X)
8: while |dom(X)| > 1 ∧ ¬ check2B-X(P ,X,max(X)) do
9: remove max(X) from dom(X)

10: if |dom(X)| < domainSize then
11: P ← 2B(P ,{X})
12: end for
13: until P = Pbefore

5 3B (Bound singleton arc consistency)

There is a recent attraction about singleton consistencies, and more particularly
about SAC (Singleton Arc Consistency), as illustrated by recent works of [11,
22, 1, 4, 5, 18]. Even if it is possible to propose an algorithm to establish bound
SAC, it does not seem quite appropriate when dealing with large domains as
AC requires to represent domains in extension (and not by simple intervals). We
propose here two algorithms to establish 3B which can be seen as a relaxation
of bound SAC.

5.1 3B-X

Algorithm 6 is the bound adaptation, denoted 3B-X, of a basic singleton arc
consistency algorithm. 3B-X starts by enforcing bound arc consistency (2B) on
the given network (line 1). Then, each bound of the domain of each variable is
checked to be 2B-consistent by calling the function check2B − X (lines 6 and
8). Two variants, denoted check2B − 1 and check2B − 2, of this function are
given in the subsequent subsections. Bounds that are not consistent are then
removed (lines 7 and 9). When the domain of a variable is modified, bound
arc consistency is maintained (lines 10 and 11). The process continues until a
fix-point is reached.

5.2 3B-1

3B-1 corresponds to the algorithm 6 that uses the function check2B−1 depicted
by Algorithm 7. Roughly speaking, 3B-1 is the bound adaptation of the singleton
arc consistency algorithm SAC-1 [11].

Proposition 2. Applied to binary constraint networks, Algorithm 3B-1 admits
a worst-case time and space complexity in O(mn2d3) and O(m), respectively.
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Algorithm 7 check2B-1(P = (X ,C ) : CN, X : Variable, a : Value) : boolean
1: return 2B(P |X=a, {X}) 6= ⊥

Proof. The number of turns of the main loop of Algorithm 3B-X is at most
nd, one element being removed at each turn. The number of calls to check2B-
X is 2 ∗ n at each turn. As a call to check2B-1 is equivalent to a call to 2B
which is O(md2), we obtain an overall worst-case time complexity in O(mn2d3).
As Algorithm 3B-1 does not require any additional data structure, its space
complexity is the same as check2B-1, namely O(m). �

5.3 3B-2

3B-2 corresponds to the algorithm 6 that uses the function check2B−2 depicted
by Algorithm 10. The idea is to improve the performance of the basic algorithm
by recording and exploiting some information. For instance, when the consistency
of a value must be checked again, it is inefficient to restart checking from scratch
[7, 5]. Hence, we introduce three data structures:

– initialized is an array that indicates for any pair (X,a) whether the 2B-
consistency of (X,a) has been checked at least one time,

– minInferences is a three-dimensional array that allows recording for any
triplet (X,a,Y ) the value min(Y ) in 2B(P |X=a),

– maxInferences is a three-dimensional array that allows recording for any
triplet (X,a,Y ) the value max(Y ) in 2B(P |X=a).

We will assume that initialized is an array whose elements are initially set
to false (it does not appear in the given algorithm). Inferences with respect to a
pair (X,a) are relevant only when initialized[X, a] is equal to true. For instance,
imagine that after achieving 2B(P |X=a), we obtain a network such that min(Y )
= c and max(Y ) = d (hence, dom(Y ) = {c, . . . , d}). Then, we set initialized[X, a]
to true, minInferences[X, a, Y ] to c and maxInferences[X, a, Y ] to d.

When running check2B − 2 (Algorithm 10), recorded information is first
exploited (line 2) by a call to exploitInferences. After exploitation of recorded

Algorithm 8 exploitInferences(X : Variable, a : Value) : Set of variables
1: if ¬initialized[X, a] then
2: return {X}
3: S ← ∅
4: for each Y ∈ X do
5: min(Y ) ← max(min(Y ),minInferences[X,a,Y])
6: max(Y ) ← min(max(Y ),maxInferences[X,a,Y])
7: if min(Y ) > minInferences[X,a,Y] or max(Y ) < maxInferences[X,a,Y] then
8: add Y to S
9: end for

10: return S
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Algorithm 9 recordInferences(X : Variable, a : Value)
1: initialized[X,a] ← true
2: for each Y ∈ X do
3: minInferences[X,a,Y] ← min(Y)
4: maxInferences[X,a,Y] ← max(Y)
5: end for

Algorithm 10 check2B-2(P = (X ,C ) : CN, X : Variable, a : Value) : boolean

1: Pstore ← P
2: S ← exploitInferences(X,a)
3: if S = ∅ then
4: consistent ← true
5: else
6: consistent ← 2B(P |X=a, S) 6= ⊥
7: if consistent then
8: recordInferences(X,a) then
9: end if

10: P ← Pstore
11: return consistent

inferences, either the 2B-consistency of (X,a) still holds (line 4) as the empty
set is returned by exploitInferences (since no value in 2B(P |X=a) has been
removed), or we have to check the 2B-consistency of (X,a) from the set S of
variables whose domain has been reduced (line 6). Inferences are updated (line
8) by a call to the function recordInferences.

The function exploitInferences (Algorithm 8) returns either the singleton
{X} (line 2) if the 2B-consistency of (X,a) has never been checked or the set
of variables whose domain has lost a value which does not belong to (the last
achievement of) 2B(P |X=a) (line 8). The function recordInferences (Algorithm
9) just updates data structures.

The algorithm described here can be seen as a bound adaptation of the
SAC-OPT algorithm proposed in [5] and also as a variant of the optimized 3B
algorithm described in [7].

Proposition 3. Applied to binary constraint networks, Algorithm 3B-2 admits
a worst-case time and space complexity in O(mnd3) and O(n2), respectively.

Proof. By storing information and avoiding unnecessary computation [7],
Algorithm 3B-2 exploits the incrementality of arc consistency [5]. It means that
the 2 ∗ n potential successive calls to check2B-2 wrt a value (X,a) is in O(md2).
Functions exploitInferences and recordInferences are in O(n) and then can
be ignored. As there are nd values, the overall worst-case time complexity is
O(mnd3). It is possible to modify the data structures in order to keep only
storage wrt two bounds per variable. With this slight modification (not proposed
here due to lack of space), we obtain 2 ∗n values to be recorded for 2 ∗n current
bounds. Hence, we obtain O(n2). �
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6 3B+ (Bound singleton propagated arc consistency)

Finally, we propose an improvement of the algorithm 3B-2 presented above. In-
deed, it is possible to benefit from some inferences when exploiting recorded
information. For example, we know that if min(X) > a in 2B(P |Y=min(Y )) then
we can infer that Y > min(Y ) in 2B(P |X=a). By inserting the following instruc-
tions between lines 6 and 7 of Algorithm 8:

if initialized[Y,min(Y )] ∧minInferences[Y,min(Y ), X] > a then
min(Y ) ← min(Y ) + 1

if initialized[Y,max(Y )] ∧maxInferences[Y,max(Y ), X] < a then
max(Y ) ← max(Y ) - 1

we obtain an algorithm which corresponds to an extension of the 3B-consistency
and which can be seen as a coarse relaxation of bound SPAC.

7 Experiments

To prove the practical interest of the properties introduced in this paper, we
have implemented the different algorithms described in the previous sections and
conducted an experimentation with respect to some scheduling and frequency
assignment instances. Algorithms 2B, 2B+, 3B-1, 3B-2, 3B-2+ correspond to
the descriptions given in previous sections while 3B-1d is a dichotomic version
(not described here) of 3B-1 related to the procedure ref filtering in [19].

First, we have searched to establish a comparison between all algorithms wrt
a set of 20 job-shop scheduling instances generated using the model of Taillard
[23] by fixing 8 jobs and 8 machines. For each instance, a lower bound LB as
well as the optimal makespan OPT have been computed. We have considered
different sets of unsatisfiable CSP instances by setting different time windows
between LB and OPT (only point where instances are in fact satisfiable). Figure
1 shows the proportion of instances that have been proved to be unsatisfiable
at each variation x of the time window when establishing different consistencies.
For example, at x = 0, the time window considered is (from 0 to) LB while at
x = 1, it is (from 0 to) OPT . One can observe that 3B (and 3B+) allow a level of
filtering which is sufficient to detect the inconsistency of most of the instances,
unlike 2B+ and, especially unlike 2B and AC which behave similarly. Figure 2
shows the effort, in terms of number of constraint checks, required to establish
the different consistencies (similar results are obtained when considering cpu
times). Quite naturally, the more filtering a consistency is, the more costly it is.
One can notice that the dichotomic variant of 3B outperforms the other ones.

Next, we have considered the real-world instances of the fullRLFAP archive.
Table 1 shows the results obtained on some selected instances. Here, it clearly ap-
pears that AC is the best approach wrt these instances both in terms of cpu and
of filtering (#rmvs denote the number of detected inconsistent values). It can be
explained by the fact that frequency assignment instances are less favorable to
bound consistencies than scheduling ones (which involve many precedence con-
straints). One can also notice that 2B+ allows a slight improvement of filtering
wrt 2B (see graph4 and graph10) unlike 3B-2+ wrt 3B-2.
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AC 2B 2B+ 3B - 1 3B - 1d 3B - 2 3B - 2+

graph4 cpu 0.47 0.1 2.23 8.29 10.25 34.26 44.4
#rmvs 776 0 187 411 411 411 411

graph10 cpu 0.86 0.15 4.15 11.87 13.42 32.75 42.24
#rmvs 386 0 46 122 122 122 122

graph14-f27 cpu 0.43 0.16 1.93 3.25 2.48 3.32 5.76
#rmvs 2, 314 0 0 0 0 0 0

graph14-f28 cpu 0.43 0.16 2.1 5.81 4.72 4.56 6.73
#rmvs 3, 230 0 0 2 2 2 2

scen02-f25 cpu 0.14 0.07 0.55 0.58 0.52 0.58 0.75
#rmvs 106 0 0 0 0 0 0

scen11-f8 cpu 0.55 0.13 2.7 3.27 2.95 3.33 4.16
#rmvs 4, 992 0 0 0 0 0 0

scen11-f10 cpu 0.51 0.21 4.11 2.98 2.66 3.12 4.24
#rmvs 6, 324 3, 024 3, 024 3, 024 3, 024 3, 024 3, 024

Table 1. Establishing consistencies on RLFAP instances

In a second stage, we have searched to maintain all consistencies during
the search of a solution. We have first studied the 10 open-shop scheduling
instances with 7 jobs and 7 machines described in [23]. For each instance, we
have searched to reach the optimal makespan in less than 300 seconds by using
a branch and bound approach while exploiting constraint propagation. Table 2
gives the average relative distance, as well as the standard deviation, between the
optimal makespan and the makespan found by the solver for different filtering
algorithms. The results clearly show that 2B is the worst approach while 3B is the
best one. In particular, 3B-1d and 3B-2+ have the best behaviour. We have also
again considered the 20 job-shop scheduling instances already described above.
Table 3 presents the average time (cpu) required to reach the optimal makespan
and the proportion of instances that have been detected as unsatisfiable in less
than 300 seconds with a time window fixed to OPT−1. Once again, Maintaining
3B is the best approach.

Table 4 shows the results (time-out has been set to 900 seconds) obtained
when solving the selected RLFAP instances mentioned above. On some difficult
instances, it is interesting to note that maintaining 2B is the quickest approach
while maintaining a stronger consistency is always penalizing.

Finally, we must remember that all algorithms are based on AC3. We believe
that using a more sophisticated foundation such as AC2001/3.1 [6] or AC3.2/3.3
[17] to establish 2B or 3B will not change the results a lot (but using AC3d

AC 2B 3B - 1 3B - 1d 3B - 2 3B - 2+

Average Distance 4.79% 28.6% 4.28% 3.00% 3.32% 3.30%
Standard Deviation 3.5% 8.2% 2.4% 2.2% 2.4% 1.8%

Table 2. Maintaining consistencies on Taillard’s 7x7 open-shop instances
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AC 2B 2B+ 3B - 1 3B - 1d 3B - 2 3B - 2+

Average cpu (TW = OPT) 212 216 282 88 73 117 117
% detected unsat (TW = OPT-1) 45% 55% 30% 85% 85% 85% 85%

Table 3. Maintaining consistencies on 8x8 job-shop instances

AC 2B 2B+ 3B - 1 3B - 1d 3B - 2 3B - 2+

graph04 cpu 2.11 timeout timeout 260 314 391 678

graph10 cpu 8.18 timeout 14.27 timeout timeout timeout timeout

graph14-f27 cpu 6.34 timeout timeout timeout 847 timeout timeout

graph14-f28 cpu 40.73 8.11 20.48 347.57 435.91 timeout timeout

scen02-f25 cpu 4.12 2.86 43.46 47.84 43.61 49.95 159.1

scen11-f8 cpu 115.26 74.62 98.86 timeout timeout timeout timeout

scen11-f10 cpu 6.69 6.4 15.59 388.28 372.71 652.25 timeout
Table 4. Maintaining consistencies on RLFAP instances

[24] could be worthwhile). Indeed, we know for example that establishing 2B
remains O(md2) even if it is based on an optimal arc consistency algorithm.
Further, our preliminary tests have confirmed this prediction. Nevertheless, 2B+
is one consistency that could benefit from such sophistication since many path
consistency checks could be avoided.

8 Conclusion

The modest contribution of this paper is to establish a, hopefully clearer, connec-
tion between domain filtering consistencies, taken from the discrete CSP model,
and bound consistencies, taken from the continuous CSP model. In particular,
we have studied bound versions of well-known domain filtering consistencies.

The great advantage of using bound consistencies is that space requirement
can be very limited, especially when domains are convex. For some discrete CSP
instances with very large domains, it can be the only realistic approach. On the
other hand, when space saving is not mandatory, worst-case time complexities of
establishing bound consistencies wrt discrete instances (for which, no constraint
semantics is available) are rather disappointing. For instance, in this context, the
worst-case time complexity of establishing 2B (i.e. bound AC) is similar to the
one of establishing AC. From a practical point of view, using bound consistencies
is a good approach when dealing with problems which involve “bound-oriented”
constraints such as precedence constraints. But, in this case, it is often possible
to adopt a specific filtering by exploiting constraint semantics and also obtain
a better complexity. In a less favorable context, our experimental results from
some frequency assignment problems does not show an overall real advantage of
using bound consistencies wrt arc consistency. However, we believe that bound
consistencies could play a role in the development of methods for controlling the
effort required to maintain a strong consistency during search.
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