CSP4J: a black-box CSP solving API for Java
http://cspfj.sourceforge.net/

Julien Vion

CRIL-CNRS FRE 2499,
Université d’Artois
Lens, France
vion@ocril.univ-artois.fr

Abstract. We propose an API, namely CSP4J @onstraint Satisfaction Prob-
lem for Java that aims to solve a CSP problem part of any Java application
CSP4J is distributed online using the LGPL license [16]. Wend our API to

be a “black box”, i.e. to be able to solve any problem withauting parame-
ters or programming complex constraints. We intend CSP4#ibtee towards the
Graal of Al: the ability to solve any problem in a reasonabteetwith a minimal
expertise from the user.

1 Introduction

Many problems arising in the computing industry involve siaint satisfaction as an
essential component. Such problems occur in numerous dersach as scheduling,
planning, molecular biology and circuit design. Problenw®lving constraints are usu-
ally NP-Complete and need, if able, powerful Artificial IHigence techniques to be
solved in reasonable time. Problems involving constraamésusually represented by
so-called constraint networks. A constraint network isgincomposed of a set of
variables and of a set of constraints. Finding a solutiondorestraint network involves
assigning a value to each variable such that all constraretsatisfied. The Constraint
Satisfaction Problem (CSP) is the task to determine whethaot a given constraint
network, also called CSP instance, is satisfiable. The Mak@onstraint Satisfaction
Problem (Max-CSP) is the task to find a solution that satigfeemuch constraints as
possible, and eventually proving that a given solution isnmoal, i.e. no other solution
exists that can satisfy more constraints than the given one.

CSP4J has been in development since 2005 and is quicklyraayuiaturity. We
intend our API to be a “black box” solving CSP and Max-CSP.daithis assumption,
CSP4J does not focus on problem-specific global constraititeugh the Object de-
sign of CSP4J permits to develop such constraints. For eleai@BP4J is shipped with
the well known “all-different” global constraint includira simple specific propagator.

CSP4J proposes powerful engines based on the latest refitenfecurrent re-
search in Al.

— MGAC, a complete solver based on the well known MGA@r /wdeg algorithm
[13]. It can solve any CSP in a complete way: if given enougtetia feasible
solution, if it exists, will be found. If no solution existis engine is able to prove
it.

— MCRW, an incomplete local search solver based oMire Conflicts Hill-Climbing
with Random Walkalgorithm [11]. This engine can be used to solve optimizatio
problems that can be formalized as a Max-CSP problem in aytitaa” way: the
algorithm can be stopped after a given amount of time, an8élsesolution found
so far will be given.

— Tabu, an incomplete local search solver performing a Tabu sg&jcfiabu have
similar characteristics @ddCRW .

— WMC, an incomplete local search solver based orBteakout Method12], that
show similar characteristics MCRW and Tabu, although not really suited for
Max-CSP problems.

— Combo, a complete solver based on the hybridization of MGé&r /wdeg with
WMC [21].

In order to prove the interest of our library, we developeeha test applications, all
distributed online using the GPL license [15]. One of thestapplications is dedicated
to participate to the International CSP Solver Competsj@nd tries to solve problems
delivered under the XCSP 2.0 format [18]. This solver paréited to the two first In-
ternational CSP Solver Competitions. This “competitorfsien of CSP4J is shipped
with a particular constraint called “Predicate Constraittat compiles intentional con-
straints as defined by the XCSP 2.0 format.

Other example applications include :

— a random problem generator and solver, which is very usefbkenhchmark algo-
rithms and computers,

— a Minimal Unsatisfiable Core (MUC) extractor, able to extmminimally unsat-
isfiable set of variable and constraints from a larger incehteCSP,

— an Open-Shop solver, able to find feasible and optimal swiatio Open-Shop
problems

— last but not least, a Sudoku solver

2 Solving a CSP in a black-box

In order to be able to solve any kind of problem, CSP4J focosesvo main topics:
genericity and flexibility. Flexibility was obtained by tlohoice of an object-oriented
language for its development: Java 5. The object-orieraedeption of CSP4J permits
to model problems using a fully object-oriented scheme.

A few classes and interfaces are in the heart of CSP4J, aslisby the UML
diagram on Figure 1: Th&roblem, Variable andConstraint classes define a CSP
instance. The Solver interface is implemented by all ergprevided with CSP4J.

TheVariable class: It can be used directly through its constructsmain simply
contains the domain of the variable (i.e. the set of valuevélreble can take its value

in) under the form of an array of integers.

Constraint

Varlablel l.n + Constraint(scope : Variable[])
+ Variable(domain : int[], name : String) + check() : bool
+ getName() : Strin # getValue(variablePosition : int) : int

1 + revise(variablePosition : int, level : int)

.n —
__— l.n
- «interface»
_— ProblemGenerator
[Problem |

i —— + generate()

-
+ load(generator : ProblemGenerator) : Problem + getVariables()

+ getConstraints()

«interface»
Solver

+ runSolver() : bool
+ getSolution()

|
AbstractSolver |

]
+ AbstractSolver(problem : Problem) |

Fig. 1. UML sketch of CSP4J

public final class DTPConstraint extends Constraint {

final private int duration0O;
final private int durationl;

public DTPConstraintfinal Variable[] scope,
final int duration0, final int durationl) {
super(scope);
this.duration0 = durationO;
this.durationl = durationl;

@Override

public boolean check () {
final int value0O = getValue (0);
final int valuel = getValue(1);

return (valueO + durationO< valuel
|| valuel + durationl< value0O);

Listing 1.1. The Disjunctive Temporal Constraint

final Predicate predicate =mew Predicate ();
predicate .setExpression (" (X8_X1.<_X2) .|| - (X2.+.X3.<.X0)");
predicate .setParameters ("inX0.int_.X1.int.X2.int.X3");

final PredicateConstraint dtpConstraint =
new PredicateConstraint(scope, predicate);

dtpConstraint.setParameters(scope [0].getName() .+ # duration0
+ "." + scope[l].getName() + 2" + durationl);

try {
dtpConstraint.compileParameters();

} catch (FailedGenerationException ej
System.err.println("Failedto.compile.constraint”);
System. exit (1);

}
Listing 1.2. Defining a DT Constraint with predicates

TheConstraint class . It consists of an abstract class that must be extended toedefi
the constraints that define the problem. In particular, thetract metho@heck () must
be overriddencheck() must return whether the current tuple is allowed by the con-
straint. The current tuple is accessible throughghd alue(int variable Position)
method,variable Position corresponding to the position of the variable in the con-
straint, as defined by theope in the constructor. Listing 1.1 gives an example on how
to easily define a constraint. Alternatively, one could tmeRredicateConstraint to
define such a constraint as shown on Listing 1.2. Notice, iew#hat source code from
PredicateConstraint is released amongst the Competitor test application forAJSP
under the GPL, and not directly with the CSP4J API.

If desired, one may also override thevise(int variable Position, int level) me-
thod in order to develop constraint-specific propagatdraot, a revision using the
AC3rm algorithm (see section 3.1) is done.

The Problem class: It defines a CSP. Th&roblemGenerator interface permits to
define classes that will be intended to generate problenave.sTo define a problem
to be solved with CSP4J, one has to implement the Problem&tenénterface. An in-
stance of the problem is then loaded by calling the static hotet
Problem.load(ProblemGenerator). The ProblemGenerator interface only defines
three methods.

— generate(): this method is called upon loading of the Problem, it can $eduo
create constraints and variables

— Collection (Variable) getVariables(): this method must return the set of vari-
ables that defines the problem

— Collection (Constraint) getConstraints(): this method must return the set of
constraints that defines the problem

The Solver interface and thedbstractSolver helper class: These permit to define
additional engines for CSP4J. The MGAC and MCRW enginesabiate with CSP4J

Algorithm 1: revise-rm(X: Variable): Boolean

1 domainSize «— |dom(X)]

2 foreachC' | X € vars(C') do

3 foreachv € dom(X) do

4 if supp|[C, X, v] is valid then continue

5 tuple — seekSupport(C, X,)

6 if tuple = T then removev from dom(X)
7 else

8 foreachY € vars(C') do

9 L supp|C, Y, tuple[Y]] « tuple

[+ for wdeg: */
10 if dom(X) = 0 then wght[C]++

11 return domainSize # |dom(X)|

Algorithm 2: GAC3rm (P = (27, %): CN)

1Q— %

2 while Q # () do

3 pick X from @

4 foreachY € 2 |3C €€ | X € CAY e CAX #Y do
5 if revise-rm(Y’) then

6 if dom(Y") = () then return false

7 L Q—QUY

are classes that extend$stractSolver. TherunSolver() method launches the res-
olution and returnsgrue if the problem is satisfiable arfdlseif it is not. The method
getSolution() returns the last found solution (the best solution foundssddr Max-
CSP). To use CSP4J as an incomplete Max-CSP solver, one laas thrun.Solver()
from a thread to control its execution.

To illustrate how CSP4J can be used in a Java applicatiotingi4.3 defines the
well-known Pigeons problem, using a cliquedsf ferent constraints defined as pred-
icates. Once the problem has been defined and loaded, thegg@lkocess can be
launched in a few lines of code, as shown on Listing 1.4.

3 Under the hood

3.1 The MGAC engine

Generalized Arc Consistency guarantees the existenceupfes of each value in each
constraint. Establishing Generalized Arc Consistency givan networkP involves
removing all generalized arc inconsistent values.

Many algorithms establishing Arc Consistency have beepgsed in the literature.
We believe that GAC3rm [8] is a very efficient and robust on&O3rm is a refinement

public class Pigeons implements ProblemGenerator{

}

final private int size;

final private List<Variable> variables;

final private Collection<Constraint>- constraints;
final private Predicate predicate;

public Pigeons(nt size) {
this.size = size;
variables =new ArraylList<Variable>(size);
constraints =new ArrayList<Constraint>();
predicate =new Predicate ();
predicate .setExpression ("X0=_.X1");
predicate.setParameters(”inX0.int.X1");

}

public void generate ()throws FailedGenerationExceptioq
final int [] domain = new int[size — 1];

for (int i = size — 1; —i >= 0;) { domain[i] = i; }
for (int i = size; —i >= 0;) {
variables .addifew Variable (domain, "V + i));
}
for (int i = size; —i >= 0;) {
for (int j = size; —j >= i + 1;) {
constraints.add(diff (variables.get(i), variables
-get(j)));
}
}

}

private Constraint diff(final Variable varl,
final Variable var2) throws FailedGenerationExceptiorq
PredicateConstraint constraint mew PredicateConstraint(
new Variable[] { varl, var2 }, predicate);
constraint.setParameters(varl.getName() + "
+ var2.getName());
constraint.compileParameters();
return constraint;

}

public Collection<Variable> getVariables () {
return variables;

}

public Collection<Constraint> getConstraints (){
return constraints;

}

Listing 1.3. The Pigeons problem

public static void main() throws
FailedGenerationException , I0Exceptiof
final Problem problem = Problem.load (10);
final Solver solver =new MGAC(problem);
final boolean result = solver.runSolver();
System.out. printin(result);
if (result) {

System.out. printin(solver.getSolution ());

}
}

Listing 1.4. Solving the Pigeons-10 problem

Algorithm 3: MGAC(P =(2",%¢) : CN, max BT : Integer): Boolean

if max BT < 0 then throw Ezpiration

if 2 = (then return true

select(X,v) | X € 2 Aa € dom(X)

P — GACrm(P|x=a)

if P' £ 1L A MGAC(P'\X, mazBT) then return true
P/ — GACTm(P|X¢a)

return P’ # L A MGAC(P',mazBT — 1)

~N o b~ WN P

of GAC3 [9]. They both admit a worst-case time complexityxer3d”+1). GAC2001
[1] admits a worst-case time complexity 6f(er?d”) and has been proved to be an
optimal algorithm for establishing Generalized Arc Cotesisy.

The GAC3rm algorithm is described in Algorithm 2. Every edalie of the CN is put
in a queue in order to be revised one by one using Algorithrhah effective revision is
done (i.e. at least one value is removed from the variabla)eahbors of the variable
are put in the queue. The algorithm continues until a fix-pisimeached, i.e. no more
value can be removed in the CN. A neighbor variable is oneghates at least one
constraint with the current variable.

Residual supports{ipp[C, X, v]) are used during the revision in order to speed up
the search. Contrary to GAC2001, if the residue is no longdidythe search for a
valid tuple is restarted from scratch, which allow us to kerepresidues from one call
to another, even after a backtrack. Although GAC3rm byfiiseiot optimal, [8] shows
that maintaining GAC3rm during search (see below) is mdieiefit than maintaining
GAC2001.

The MGAC algorithm [13] aims at solving a CSP instance andagpers a depth-
first search with backtracking while maintaining (genexedi) arc consistency. More
precisely, at each step of the search, a variable assigrimpatformed followed by a
filtering process called constraint propagation whichegponds to enforcing general-
ized arc-consistency.

Recent implementations of MGAC use a bina2yway) branching scheme [6]: at
each node of the search tree, a variablés selected, a value € dom(X) is selected,

Algorithm 4 : initP(P = (£, %) : CN): Integer

1 foreach X € 2 do
2 selectv € dom(X) | countCon flicts(P|x=.) is minimal
P — P|X:'U

4 return countCon flicts(P)

w

and two edges are considered: the first one corresponiistoa and the second one
to X #a.

Algorithm 3 corresponds to a recursive version of the MGAgoathm (using bi-
nary branching). A CSP instance is solved by calling Atié&; AC function: it returns
true iff the instance is satisfiablé?| x—, denotes the constraint network obtained from
P by restricting the domain oX to the singleto{a} whereasP| x, denotes the con-
straint network obtained frod? by removing the value from the domain ofX'. P\ X
denotes the constraint network obtained frérby removing the variablé .

The heuristic that allows the selection of the pair, a) has been recognized has a
crucial issue for a long time. Using different variable aidg heuristics to solve a CSP
instance can lead to drastically different results in teofnsfficiency.

In[2], itis proposed to associate a counter, denatght[C], with any constrain€’
of the problem. These counters are used as constraint wejgki¥henever a constraint
is shown to be unsatisfied (during the constraint propaggirocess), its weight is
incremented by 1 (see line 11 of Algorithm 1).

The weighted degree of a variahlé is then defined as the sum of the weights of
the constraints involvingd and at least another uninstantiated variable. The adaptive
heuristicdom /wdeg [2] involves selecting first the variable with the smallesio cur-
rent domain size to current weighted degree. As search @ssgs, the weight of hard
constraints becomes more and more important and this platig helps the heuristic
to select variables appearing in the hard part of the netwiinis heuristic has been
shown to be quite efficient [19].

3.2 Local Search algorithms

Although there also has been some interest in using LocatBéachniques to solve
the CSP problem [11, 3,4, 17], these algorithms have not Bagafied a fraction as
much as MGAC. Contrary to systematic backtracking algorgHike MGAC, local
search techniques are incomplete by nature: if a solutigsisit is not guaranteed to
be found, and the absence of solution can usually not be grél@vever, on very large
instances, local search technigues have been proved te lheshpractical alternative.
We also found that local learch algorithms are far more efficthan MGAC on quite
small, dense instances.

A local search algorithm works azcomplete assignmenisach variable is assigned
with some value, then the assignment is iterativelyaireduntil a solution is found.
A repair generally involves changing the value assigned var&@ble so that as few
constraints as possible are violated [11]. The initial alalé assignments may be ran-
domly generated. However, in order to make the first repageemsignificant, we use

Algorithm 5: inity(P = (27, %) : CN)
1 foreach X € 2" do
foreachv € dom(X) do
Y(X,v) <0
foreachC € ¢ | X € vars(C) do
| if ~check(Clx=0) theny(X,v) « (X, v) + wght[C]

a b~ 0N

Algorithm 6 : update/(X : Variable,v,;4: Value)

1 foreachC € ¢ | X € vars(C) do

2 foreachY € vars(C) | X # Y do

3 foreachv, € dom(Y’) do

4 if check(Cly =v,) # check(Cly=v,anx=0,,,) then
5

6

7

8

if check(Cly=v,) then

| ’Y(Yv Uy) — 7(Y7 Uy) - wght[c]
else

L ’Y(Yv Uy) — 7(Y7 Uy) + wght[c]

Algorithm 4 to build the initial variable assignment. Thgailithm tries to minimize
the number of conflicting constraints after initializatieountCon flicts(P) returns
the number of falsified constraints involving only assigradables.

Designing efficient local search algorithms for CSP requihe use of clever data
structures and powerful incremental algorithms in ordéeep track of the efficiency
of each repair. [3] proposes to use a data struct@?é v) which at any time contains
the number of conflicts a repair would lead to. Algorithms 8 &ndescribes the man-
agement ofy (check(C') controls whethe€ is satisfied by the current assignments of
vars(C)). Since each assignation has an impact only on the constiairolving the
selected variable, we can count conflicts incrementallyaahéteration with a worst-
time complexity ofO(I},q.7d).

There are many cases where no value change can improve tieatcassignment
in terms of constraint satisfaction. In this case, we haaetled docal minimum The
main challenge over local search techniques is to find thieviesto avoid or escape
local minima and carry on the search.mdaxIterations parameter is given to each
local search algorithm. It mostly allows to define a restémdtegy: if no solution is
found after a fixed number of iterations, the search is restawith a new initial as-
signment. The best value efaxlterations is highly dependant on the nature of the
problem. This comes against our view of a “black box” CSPegland future progress
on CSP4J will be aimed to eliminate that kind of parametemweéicr, default values
are given to each algorithms and we found them to be quitestobu

The MCRW Engine With a probabilityp, the repair is chosen randomly instead of
being selected into the set of repairs that improves theentissignment. The first al-

Algorithm 7: MCRW(P = (%2, %) : CN, maxzIterations: Integer): Boolean

1 nbConflicts « initP(P) ; inity(P) ; nblterations «— 0
2 while nbCon flicts > 0 do

3 selectX randomly| X is in conflict

4 if random|0, 1] < p then

5 | selectv € dom(X) randomly

6 else

7 | selectv € dom(X) |~(X,v) is minimal

8 Vo1 < current value forX

9 if v # voiq then

10 P — P|X:v

11 nbConflicts — (X, v)

12 updatey(X, void)

13 if nbIterations++ > maxlterationsthen throw Expiration

14 return true

Algorithm 8: Tabu@ = (£, %) : CN, maxIterations: Integer): Boolean

1 nbConflicts « initP(P) ; inity(P) ; nblterations «— 0

2 init TABU randomly

3 while nbCon flicts > 0 do

4 select(X,v) ¢ TABUV meets the aspiration criterig v(X, v) is minimal
Vola < current value forX

insert(X, vo1q) in TABU and delete oldest element frdMABU

P — PlX:v

nbConflicts «— (X, v)

updatey(X, void)

10 if nbIterations++ > maxIterationsthen throw Expiration

© 00 N O O

11 return true

gorithm implementing this technique was described in [T we call itMin-Conflicts
Random WalKMCRW). Algorithm 7 performs a MCRW local search. At eachrate
tion, a variable in conflict is selected (line 3). A variabds in conflict if any constraint
involving X is in conflict. Then, with a probability, a random value (line 5) or, with
a probabilityl — p, the best value (line 7) is selectadis one additional parameter we
aim to eliminate in further versions of CSP4J. Again, thead#fvalue p = 0.04) is
quite robust for most problems.

The Tabu engine: Previous repairs are recorded so that we can avoid repairtetid
back to an already visited assignment. A limited number péis is remembered, and
older ones are forgotten, allowing us to always have a fdirfjh number of repairs
available at each iteration. The size of the Tabu List isteaby fixed before search.
Note that theaspiration criterionallows to select a repair in the Tabu list if it permits
to achieve a new best assignment. There have been previgls that mention the

Algorithm 9: WMC(P = (2, %) : CN, maxzIterations: Integer): Boolean

1 nbConflicts « initP(P) ; inity(P) ; nblterations «— 0
2 while nbCon flicts > 0 do

3 select(X,v) | v(X,v) is minimal

4 Uold < current value forX

5 if v(X,v) > ~v(X,v01q) then
6
7
8
9

foreachC € ¢ | C'is in conflictdo
wght[C]++ ; nbCon flicts++
foreachY € vars(C') do
L foreachw € dom(Y') do

10 | if scheck(Cly=w) then (Y, w)++

11 else

12 P — P|x=v

13 nbCon flicts — v(X,v)

14 B updatey(X, voiq)

15 | if nbiterations++> mazlterations then throw Expiration

16 return true

Fig. 2. Escaping from a local minimum

efficiency of Tabu search for Constraint Optimization pesbs (Max-CSP) [3, 4]. Al-
gorithm 8 performs a Tabu search. The size of the Tabu listésamlditional parameter
we aim to eliminate in further versions of CSP4J. Again, tefadlt value (30) is quite
robust for most problems.

The WMC Engine Another efficient way to escape from local minima, called the
Breakout method, has also been proposed [12]. We use thisothé&d design a local
search algorithm aimed to find solutions to satisfiable CSPs.

The resulting algorithmeighted Min-ConflicttWMC) is described in Algorithm
9. Line 5 detects local minima. When a local minimum is en¢ered, all conflicting
constraints are weighted (line 12). Note that a main adgentf WMC over Tabu
search or MCRW is that it involves no parameter outsidevaf: [terations.

Algorithm 10: Hybrid(P =(2", ¢): CN, maxIter: Integer,«: Float): Boolean

8n
ed

1 maxTries — 1; maxBT «— maxIter x

2 repeat

3 startTime «— now()

4 repeat |[mazTries| times

5 try

6 | return WMC(P, mazIter)

7 catch Expiration

8 W MC Duration < now() — startTime
9 startTime «— now()

10 try

11 | return MGAC(P, maxzBT)

12 catch Expiration

13 MGAC Duration — now() — startTime

14 maxTries «— a X mazTries

15 maxBT «— a X mazBT x WMC Duration/MGAC Duration

Incrementing the weight of constraints permits to effeativand durably escape
from local minima, as illustrated by Figure 2. Incrementthg constraints “fills” the
local minimum until another parts of the search space ahezh Constraints that are
heavily weighted are expected to be the “hardest” congrainsatisfy. By weighting
them, there importance is enhanced and the algorithm wilbtsatisfy them in priority.

The Combo enginelt is well known that the main drawback of systematic baakra
ing strategies such as MGAC is that an early bad choice mayteaxplore a huge
sub-tree that could be avoided if the heuristic had lead ¢as®n a rather small, very
hard or even inconsistent sub-problem. In this case, thees@ said to be subject to
“thrashing”: it rediscovers the same inconsistencies ipleltimes. On the other hand,
it is important to note that some instances are not inhereetly difficult. These often
show a “heavy tailed” behavior when they are solved multipphees with some random-
ization [5]. Thedom /wdeg heuristic was designed to avoid thrashing by focusing the
search on one hard sub-problem [2, 17]. This technique isrteg to work quite well
on structured problems.

On the other hand, the main drawback of local search algositls quite straight-
forward: their inability to prove the unsatisfiability of gslems and the absence of
guarantee, even on satisfiable problems, that a solutiob&/fbund. The development
of hybrid algorithms, hopefully earning the best from eadrld, has been devised as
a great challenge in both satisfiability and constrainsgattion problems [14].

Constraint weighting used byom/wdeg heuristic and WMC work in a similar
way. Both help to identify hard sub-problems. [10] repohattstatistics earned dur-
ing a failed run of local search can be successfully as arleotaguide a systematic
algorithm in the search of a solution or to extract an incehecore. We propose to
use directly the weights of the constraints obtained at titead a WMC run to initi-
atedom/wdeg weights. We devise a simple hybrid algorithm, described lgoAthm

10 based on this assumption. This algorithm is more torgudéscribed in [21] (in
French) and [20].

4 Conclusion and perspectives

We presented CSP4J, an API for Java 5, intended to solve GSpartaon any Java
application, in a “black-box” scheme. We introduced cluasGsP4J usage and given
some examples of use, the we presented the five engines dhijtheCSP4J and their
respective interest.

We will continue to develop CSP4J, by optimizing the aldorit as well as refining
them according to the latest refinements of fundamentahrelés Constraint Program-
ming, and especially SAT and CSP solving. Next developm&®SP4J will focus on
preprocessing, especially using promising algorithmé sssdDual Consistency [7]. We
will also try to eliminate any user-supplied parameter fraun algorithms and will fo-
cus towards merging the advantages of all engines so thatpestese at all should be
needed from the user, in the spirit of CLP(FD) used in Protagrpreters.

References

1. C. Bessiere, J.C. Régin, R.H.C. Yap, and Y. Zhang. Amugtcoarse-grained arc consis-
tency algorithm Artificial Intelligence 165(2):165-185, 2005.

2. F.Boussemart, F. Hemery, C. Lecoutre, and L. Sas. Bapstistematic search by weighting
constraints. IrfProceedings of ECAI'04pages 146-150, 2004.

3. P. Galinier and J.K. Hao. Tabu search for maximal contreatisfaction problems. In
Proceedings of CP'9%hages 196-208, 1997.

4. P. Galinier and J.K. Hao. A General Approach for Constr&olving by Local Search.
Journal of Mathematical Modelling and Algorithir3(1):73—-88, 2004.

5. C.P. Gomes, B. Selman, N. Crato, and H. Kautz. Heavyeagileenomena in satisfiability
and constraint satisfaction problend#&urnal of Automated Reasonirig#:67—-100, 2000.

6. J. Hwang and D.G. Mitchell. 2-way vs d-way branching forRC# Proceedings of CP’05
pages 343-357, 2005.

7. C. Lecoutre, S. Cardon, and J. Vion. Conservative Duals@tency. InProceedings of
AAAI'07, pages 237-242, 2007.

8. C. Lecoutre and F. Hemery. A Study of Residual Supportsrim@onsistency. IiProceed-
ings of the 20th International Joint Conference on Artificigelligence (IJCAI'’2007)pages
125-130, 2007.

9. A.K. Mackworth. Consistency in networks of relatiodstificial Intelligence 8(1):99-118,
1977.

10. B. Mazure, L. Sas, and . Grgoire. Boosting complete tigcims thanks to local search
methods.Annals of Mathematics and Atrtificial Intelligenc22:319-331, 1998.

11. S. Minton, M.D. Johnston, A.B. Philips, and P. Laird. Maizing conflicts: a heuristic
repair method for constraint-satisfaction and schedutirablems. Artificial Intelligence
58(1-3):161-205, 1992.

12. P. Morris. The breakout method for escaping from locaima. InProceedings of AAAI'93
pages 40-45, 1993.

13. D. Sabin and E. Freuder. Contradicting conventionatians in constraint satisfaction. In
Proceedings of CP'94pages 10-20, 1994.

14.

15.

16.

17.

18.

19.

20.

21.

B. Selman, H. Kautz, and D. McAllester. Ten challengegrivpositional reasoning and
search. IrProceedings of IJCAI'971997.

R.M. Stallman. GNU General Public License. GNU Projeote Software Foundation,
http://gnu.org/licenses, 1991.

R.M. Stallman. GNU Lesser General Public License. GNbjeRi—Free Software Founda-
tion, http://gnu.org/licenses, 1999.

J.R. Thornton.Constraint weighting local search for constraint satigfan. PhD thesis,
Griffith University, Australia, 2000.

M. van Dongen, C. Lecoutre, O. Roussel, R. Szymanek, fdte C. Jefferson, and R. Wal-
lace. Second International CSP Solvers Competition./ftfai.ucc.ie/06/Competition.html,
2006.

M. R. C. van Dongen, editoRroceedings of CPAI'05 workshop held with CP,@blume I,
2005.

J. Vion. Breaking out CSPs. Proceedings of the CP 2007 Doctoral Programmages
175-180, 2007.

J. Vion. Hybridation de prouveurs CSP et apprentissagéctes des troisiemes Journées
Francophones de Programmation par Contraintes (JFPC,@DQ7.

