
Applied Intelligence manuscript No.
(will be inserted by the editor)

Multi-variable Distributed Backtracking with Sessions

René Mandiau · Julien Vion ·
Sylvain Piechowiak · Pierre Monier

Received: date / Accepted: date

Abstract The Constraint Satisfaction Problem (CSP) formalism is used to represent
many combinatorial decision problems instances simply and efficiently. However,
many such problems cannot be solved on a single, centralized computer for various
reasons (e.g., their excessive size or privacy). The Distributed CSP (DisCSP) extends
the CSP model to allow such combinatorial decision problems to be modelled and
handled. In this paper, we propose a complete DisCSP-solving algorithm, called Dis-
tributed Backtracking with Sessions (DBS), which can solve DisCSP so that each
agent encapsulates a whole “complex” problem with many variables and constraints.
We prove that the algorithm is sound and complete, and generates promising experi-
mental results.

Keywords multi-agent system · Distributed CSP · sessions

1 Introduction

The Multi-Agent Systems community is usually interested in coordination issues, and
especially with respect to interactions between distinct entities. Many definitions have
been proposed in the literature, from the concept of meta-actions that define the inter-
actions [41] to the complex notions of anticipation [36], including self-organization
and emergence [12, 15, 57], and junction tree models [61, 62]. In this paper, we con-
sider that coordination can also be defined as a search process in the “distributed
problem-solving” context [26, 53, 66]. Here, the coordination can be seen as the de-
composition of a problem into sub-problems, the resolution of these sub-problems
and the mechanisms underlying the inter-agent exchange of partial solutions between
agents until a global solution is found.

René Mandiau · Julien Vion · Sylvain Piechowiak · Pierre Monier
Univ Lille Nord de France, F-59000 Lille, France
UVHC, LAMIH, F-59313 Valenciennes, France
CNRS, UMR 8201, F-59313 Valenciennes, France
E-mail: {rene.mandiau, julien.vion, sylvain.piechowiak}@univ-valenciennes.fr

2 René Mandiau et al.

The Distributed Constraint Satisfaction Problem (DisCSP) [1, 34, 38, 66, 69]
is a formalism for studying these mechanisms. Intra- and inter-agent reasoning is
based on a set of relations between variables. The problem to be solved requires
interactions between the agents in order to find a global solution among the local
solutions. DisCSP are designed to handle problems that rely on physically distributed
data and cannot be solved in a centralized way.

Most research on DisCSP considers that each agent represents exactly one vari-
able of the problem. However, many problems are more naturally modeled with each
agent representing a whole sub-problem comprised of many variables and constraints.
Agents generally match the modeler’s view of abstract or physical entities. For ex-
ample:

– Timetabling/meeting problems [30, 47, 63] – Each participant wants to schedule
several events at once. Each event is a variable, but constraints and other data for
each participant must remain private and are thus encapsulated in an agent that
represents a participant.

– Road traffic [17, 18] – Road traffic simulation can also be modeled using a DisCSP
with several variables per agent. Each vehicle at an intersection perceives other
vehicles as variables constrained by priority relationships. In this particular prob-
lem, there is no direct communication between agents and no interface variables.
Each variable is specific to each agent and its representation of the environment.
Constraints and variables are subsequently private. Solving the problem deter-
mines the next action to be performed; this alters the agent’s representation of the
world.

– Multi-robot exploration [51, 52, 56, 60] – A third application considers a fleet of
autonomous robots exploring an unknown environment. These robots are agents
that build a representation in which other agents are considered as variables. The
constraint modeled are defined by communication ranges, obstacles and collision
avoidance.

– Distributed configuration [22, 35] – The configuration of the product involves as-
sembling different elements according to different constraints (e.g., physical con-
straints between elements, user preferences) and delivering individualized prod-
ucts to the end user. In this context, the knowledge of these different elements is
naturally distributed and the agents may be the different participants.

Such models can be easily transformed by splitting the sub-problems until only
one variable per agent remains. However, this raises major issues. First, the user’s
model is implicitly altered, which can be confusing if the user is not an expert. Sec-
ond, such an alteration of the model modifies not only the agents, but also their re-
lationships since additional constraints between agents must be added to the model.
Third, managing a dynamic environment (i.e., an environment in which the agents,
variables and constraints vary during the search) is even tougher if the sub-problems
are altered. Fourth, agents allow the decision problems to be modeled with privacy or
size restrictions. Splitting the problem implicitly adds restrictions where they are not
needed, thus negatively altering the performance of algorithm solving.

Several algorithms dedicated to asynchronously solving DisCSP can be found
in the literature; the most representative are Multi-ABT [32, 33], Multi-AWC [68]

Multi-variable Distributed Backtracking with Sessions 3

and AFC [21, 44]. In this paper, we propose a complete DisCSP-solving algorithm,
named Distributed Backtracking with Sessions (DBS), which has multiple variables
per agent. Instead of using nogoods to establish a context for the backtrack messages,
DBS uses sessions. The nogood concept has been defined as an inconsistent combina-
tion of values. The principle is to record a nogood whenever a conflict occurs during
a backtracking search. Nogoods are considered extremely costly to compute [31, 42].
We show that nogoods can be replaced with sessions without altering the complete-
ness of the algorithm. This results in much more efficient message processing, but
at a price: sessions are less informative than nogoods, and DBS tends to send more
messages than ABT. The compromise we seek is to have the cost of processing these
additional messages be less than that of computing the nogoods. Moreover, with these
sessions, many useless messages can be filtered without affecting the completeness
of the algorithm.

The paper is organized as follows. Section 2 presents the general DisCSP prob-
lem and its various solving algorithms, which will be used as a basis of comparison
for DBS. Section 3 proposes our DBS algorithm. Section 4 presents the properties
of the algorithm (e.g., soundness, completeness, space and time complexities). Sec-
tion 5 describes the various filtering techniques used to avoid the processing of use-
less messages. Finally, Section 6 reports our experimental results by comparing DBS
with Multi-ABT, Multi-AWC and AFC, and Section 7 presents our conclusions and
our prospects for future research.

2 Distributed Constraint Satisfaction Problem

We briefly present useful definitions for the DisCSP (2.1) and DisCSP-solving algo-
rithms (2.2).

2.1 Definitions

Definition 1 (DisCSP) A Distributed CSP is a triple (X ,A ,C).

– X = {X1, X2, . . . , XN} is a finite set of N variables. A domain dom(Xi) is
associated with each variable Xi ∈ X and denotes the finite set of values the
variable can represent.

– A = {A1, A2, . . . , Am} is a finite set of m agents. Each agent A encapsulates
variables denoted var(A) (with var(A) ⊆ X), so that each variable of X is
encapsulated in exactly one agent.

– C = {C1, C2, . . . , Ce} is a finite set of e constraints. Each constraint Ci involves
some variables var(Ci) ⊆ X . C is divided into inter-agent and intra-agent con-
straints, denoted Cinter and Cintra respectively. An intra-agent constraint incor-
porates variables from a single agent.

In addition toN (the total number of variables), e (the total number of constraints)
and m (the number of agents), we use the following additional metrics: d is the size
of the largest variable domain and n is the maximal number of variables that can

4 René Mandiau et al.

A0 A1

A2

X2

X1

X0

X3

X4

X5

X6

highest priority lowest

Fig. 1 A DisCSP example with three agents A0, A1, A2. Fine (resp. thick) edges represent intra-agent
constraints Cintra (resp. inter-agent constraints Cinter)

be encapsulated in a single agent. Formally, ∀X ∈ X , |dom(X)| ≤ d, and ∀A ∈
A , |var(A)| ≤ n. Note that N ≤ mn.

In the remainder of the paper, like for other existing works, we also considered
binary DisCSPs. Efficiently converting non-binary constraints into binary ones is still
considered an unresolved problem [13, 14]. In most cases, a polynomial decomposi-
tion is possible, even though the pruning capabilities of the decomposed model are
inferior to those of the original [8].

Definition 2 (Interface Variable) A variable X , where ∃C ∈ Cinter | X ∈ var(C)
is called an interface variable.

Figure 1 represents a DisCSP with three agents A = {A0, A1, A2}, shown as
a graph-like macro-structure: vertices denote variables and edges denote constraints.
The DisCSP contains seven variables. Each variable is owned by one of the three
agents (all variables, except X4, are interface variables): var(A0) = {X0, X1, X2},
var(A1) = {X3, X4, X5} and var(A2) = {X6}.

Agents are given a priority order, denoted �. Without losing generality, we will
assume a lexicographic order throughout this paper: (Ai � Aj) ⇐⇒ (i < j). This
priority order is used to break cycles in the search for a global solution (i.e., a change
for agentA1, which would imply a change for agentA2, which would imply a change
for A1). “Better” priority orders can be determined using heuristics [2, 28].

Definition 3 (Acquaintances1 Γ±(A)) Agents that share a common constraint with
a given agent A are called the acquaintances of A. They are divided into the sets
Γ−(A) (higher acquaintances) and Γ+(A) (lower acquaintances), which denote dif-
ferent agents with higher and lower priority than A, respectively.

For the problem shown in Figure 1, with A0 � A1 � A2, there are Γ−(A1) =
{A0} and Γ+(A1) = ∅. There is no agent with priority lower than A1 that shares a
common constraint.

1 The acquaintances are also called neighbors in constraint graphs.

Multi-variable Distributed Backtracking with Sessions 5

2.2 Multiple variables DisCSP-solving algorithms

Several algorithms (for single-variable problems) have been proposed to solve DisCSP
instances, such as Asynchronous Backtracking (ABT) [66], Distributed Backtracking
(DIBT) [27, 28], Distributed Dynamic Backtracking (DDB) [6], Distributed Break-
out (DB) [66, 67], Asynchronous Weak-Commitment (AWC) [65] and Asynchronous
Forward-Checking (AFC) [21, 44]. Optimization algorithms, such as Distributed Dy-
namic Branch and Bound [5] and DyBop [20] also deserve to be mentioned. These
algorithms can only solve DisCSP in which each agent encapsulates exactly one vari-
able.

ABT is the reference algorithm for most work on DisCSP solving [6, 44, 54].
Thus, ABT, as well as AWC and AFC, are explained below. Of these algorithms, some
were generalized for multi-variable problems: Multi-ABT, Multi-AWC (AFC is multi-
variable). We are focusing on these multi-variable versions of the algorithms. We
compare the results from these algorithms with the results of our DBS algorithm in
multiple-/single- variable problem contexts.

2.2.1 ABT/ Multi-ABT

The Asynchronous Backtracking (ABT) algorithm asynchronously solves instances of
DisCSP. As presented by Yokoo in 2001 [66], each agent encapsulates exactly one
variable. There is an agent-variable bijection, thus making the words “agent” and
“variable” interchangeable. Each agent simultaneously assigns a value to its variable,
then sends a message to its lower acquaintances to inform them of the instantiation.
If an agent cannot find any suitable value, it sends a backtrack request to one of the
higher priority neighbors (the agent with the lowest priority in the nogood).

Let us consider agent A (and its associated variable XA). A set agentView(A)
is associated with the agent, and contains the different assignments given by A’s
higher acquaintances. If no value is compatible with agentView(A), agentA builds a
backtrack request, which contains a minimal nogood. It takes the form {(Ai, vi), . . . ,
(Ak, vk)} and consists of the smallest subset of values from agentView(A) for which
agent A cannot instantiate its variable. This minimal nogood is sent to the lowest
priority agent that appears in the nogood. ABT has been improved by considering
only one nogood per removed value, and can be implemented with polynomial space
complexity [7].

Each agent can work asynchronously. Thus, when a message is sent, it may al-
ready be obsolete, e.g., when the recipient of the message has modified its current
value before the message was received. The nogood is used to detect this. When
agent A receives a nogood, it considers it only if its current value v as well as all
values from the agentView(A) are identical to the values that appear in the nogood
(i.e., nogood ⊆ {(A, v)} ∪ agentView(A)). In some cases, agent A may receive a
nogood containing some previously unknown variable, for example, from an agent
A′. A link is then added between A and A′ to enable them to communicate with each
other.

ABT was extended to Multi-ABT in order to handle problems in which each agent
encapsulates multiple variables and constraints [32, 33]. In Multi-ABT, the variables

6 René Mandiau et al.

of agent A are replaced by a single variable whose values are tuples corresponding
to the solutions of A’s local problem. In the example shown in Figure 1, if the local
CSP of agent A has two solutions – (X0 = 1, X1 = 1, X2 = 0) and (X0 = 0, X1 =
1, X2 = 1) – then the domain of new variable XA will be comprised of these two
instantiations.

2.2.2 AWC/ Multi-AWC

The Asynchronous Weak-Commitment (AWC) [65] is an ABT variant. A problem for
ABT is that the convergence towards a solution becomes slow when the decisions of
higher priority agents are poor: the decisions cannot be revised without an exhaustive
search.

The solution proposed by Yokoo [65] consists of introducing dynamic changes
in priority order: if an agent encounters a dead-end situation, its priority is increased
(max+1, wheremax is the priority of the current highest-priority agent). In addition,
the min-conflict heuristic [46] is used to select the next value to instantiate. The worst-
case space complexity is exponential; however, in practice, this can be limited by
forgetting older nogoods. With ABT, all lower priority agents must finish their search
before modifying the variable that caused the inconsistency. Note that AWC [68] is a
sound and complete algorithm for solving DisCSPs.

AWC was extended to Multi-AWC in order to handle DisCSP with multiple vari-
ables per agent [68]. Each agent creates virtual agents, and each virtual agent manages
one local variable, thus considerably increasing the number of agents. Multi-AWC
keeps the original inter-agent organization: all initial intra-agent constraints must be
satisfied before sending messages “outside” the initial agents.

2.2.3 AFC

The Asynchronous Forward-Checking (AFC) algorithm [44] is a multi-variable per
agent DisCSP-solving algorithm. This algorithm coordinates agents synchronously,
while asynchronously propagating assignations using Forward Checking [29]. To de-
scribe AFC’s behavior, we distinguish its synchronous parts from its asynchronous
parts:

Synchronous: in AFC, assignments are performed by one agent at a time. An agent
assigns its local variables when it receives a Current Partial Assignment (CPA)
message. Agents try to extend this partial assignment to obtain a valid global
solution. When an agent assigns its local variables, it adds them to the CPA.

Asynchronous: when an agent sends a CPA, it sends a copy, called FC_CPA, to all
unassigned agents. Agents that receive the FC_CPA message update the domains
of their variables so that all their values are compatible with currently assigned
variables. If a domain is emptied, then an inconsistency is detected, and a back-
track request is built. The backtrack request (a Not_OK message) contains a min-
imal nogood, which may be costly to compute. Since the CPA is unique, only
one backtrack request is considered, even though several Not_OK messages have
been received.

Multi-variable Distributed Backtracking with Sessions 7

AFC detects a global solution when a CPA containing all variables of the DisCSP
is created. Thus, AFC does not require a termination detection procedure. When a
DisCSP is unsatisfiable, an agent will detect it in finite time and will order all agents
to stop the search.

We implemented and tested the original version of AFC in the experimental sec-
tion of this paper, although the algorithm has been improved by using dynamic back-
tracking techniques [7].

To the best of our knowledge, no studies have tried to reduce the CPU time required
to build backtrack requests and process messages. Our algorithm, called Distributed
Backtracking with Sessions (DBS), was designed to reduce the CPU time. Instead
of using the nogoods required by most algorithms [66], DBS uses sessions. We also
define a set of filtering rules that exploit sessions to significantly reduce the number
of processed messages without modifying the completeness of the algorithm.

3 Distributed Backtracking with Sessions (DBS) algorithm

Our algorithm, called Distributed Backtracking with Sessions (DBS), is a complete
DisCSP-solving algorithm in which each agent encapsulates a “complex” problem [68]
with several variables and constraints. The main feature of DBS is the use of work ses-
sions, which define the context of messages. DBS was first introduced by Doniec et al
[16] with a single variable per agent.

In this section, we present some notations (3.1) and DBS message types (3.2),
and then describe the agent data structures (3.3). Next, we explain the features of our
algorithm (3.4), present the pseudo-code (3.5) and finish with an example (3.6).

3.1 Hypotheses and notations

Each agent executing DBS encapsulates a local CSP, which is a subproblem of the
whole DisCSP. The agents’ local CSPs are connected using inter-agent constraints.
DBS requires that the agents have a static priority order, denoted �. When agent A
finds a solution to its local CSP, it communicates this solution to its lower acquain-
tances Γ+(A), and then waits for incoming messages. However, agent A anticipates
that its current local solution cannot be extended to a global solution, and thus contin-
ues to search for other local solutions during this time. These solutions must be dis-
tinct in terms of the agent’s interface variables. Like most DisCSP algorithms (e.g.,
sequence numbers are used in ABT), messages are received in the order in which they
were sent for DBS. Moreover, DBS also considers that the amount of time that passes
between sending and receiving a message is fast and cheap.

Backtrack requests are transmitted from agentV iew to the highest priority agent,
denoted A. A will forward the request to the faulty agent (i.e., the agent that per-
formed the wrong instantiation). This differs from ABT, which directly sends the
request to the right agent using the minimal nogood. More messages are required in
our approach, but we guarantee that no information is lost.

8 René Mandiau et al.

DBS is a fully asynchronous algorithm. The agents explore the search tree until
a global solution is found. During the search, agents may receive backtrack requests
pertaining to obsolete local solutions. Work sessions are used to filter out such mes-
sages [16].

Definition 4 (Work session) A work session between agentA and its lower acquain-
tances Γ+(A) is defined by a natural number that indicates the state of the global
search from agent A’s perspective.

Each agent’s work session is initialized to 0. When an agent receives backtrack
request M , it can be filtered out if the session number attached to message M does
not correspond to the agent’s work session, indicating that the message is obsolete.
When agent A receives an 〈OK?〉 message with the current solution and session
number from a higher priority agent, agent A closes its session and increases its
session number.

The AFC [43, 44] and DDBJ [55] algorithms also make use of a concept similar
to work sessions: time-stamps or step-counters. The concept of histories [58], which
was used in the AAS algorithm, is also a similar approach. For example, in AFC, the
time-stamp of agent A is always equal to the highest time-stamp received by agent A
and is updated synchronously when CPA messages are sent.

3.2 DBS message types

In DBS, agents exchange 〈STOP〉 , 〈OK?〉 and 〈BT〉 messages.
If one solution is found, DBS will reach a stable state. A global solution com-

bining all agents’ local solutions can then be built. In contrast, if the DisCSP cannot
be satisfied, one agent will detect it and will send a 〈STOP〉 message to stop the
algorithm.

The 〈OK?〉 message (with arguments (A, sol, s)) is used by agent A to send its
current local solution sol ∈ sol(A) to its lower acquaintances Γ+(A). The agent’s
current session is attached to the message. A set called agentView(A) is associated
with each agent, and this set contains (agent, solution, session) triples, thus contain-
ing an agent’s higher acquaintances’ current solutions (see 3.3).

The 〈BT〉 message (with arguments (A, sol, s) and btSet) is used by agent A′

to request a backtrack to A ∈ Γ−(A′). This backtrack request concerns agent A’s
current solution sol during session s. The backtrack request can be safely ignored if
the session number attached to the message is not equal to agent A’s current session
number or agent A is already working on some other solution because some other
agent has already requested a backtrack. btSet is a set of triples (agent, solution,
session) containing triples from an agent with higher-priority than agent A’s priority.
If agent A cannot find a consistent local solution according to its agentV iew, triples
from btSet will eventually allow agent A to continue the backtrack to an agent in
btSet.

Multi-variable Distributed Backtracking with Sessions 9

A: Agent

sol(A)
session
proposed
agentView(A)
receivedBtVal(A)
totalBtSet(A)
inconsAV (A, sol)

A′: Agent

. . .

〈OK?, (A, {. . . }, s)〉

〈BT, (A, {. . . }, s), {. . . }〉

Fig. 2 Summary of DBS messages and data structures (A � A′).

3.3 DBS data structures

The context of agent A is defined by (Figure 2):

– Set sol(A) contains the set of solutions of agentA’s local CSP. Each solution from
sol(A) is like {(X1 = v1) , . . . , (Xn = vn)} where {X1, . . . , Xn} = var (A)
and satisfies the local CSP. In practice, the content of the set is computed “on the
fly” (i.e., local solutions are added while the other agents concurrently work on
finding a global solution); obsolete local solutions are filtered out when backtrack
requests are received

– Agent A’s current session
– A set called proposed , which contains solutions already transmitted to Γ+(A)

during the current session
– Set agentView(A), which contains triples (Ai, soli, si) that are used to keep

track of its higher acquaintances’ current local solutions. When A receives an
〈OK?, (A′, sol, s)〉message, agentView(A) is updated with the (A′, sol, s) triple
contained in the message

– Set receivedBtVal(A) is used to avoid repeatedly processing the same assign-
ment. Due to asynchronous messages, each agent can receive many BT messages
for a given same assignment (Xi = v) of the current session

– Set totalBtSet(A) contains triples (Ai, soli, si). When agent A requests a back-
track, this set is used to forward the backtrack request to other agents

– Set inconsAV (A, sol) is mapped to each solution sol (with sol ∈ sol(A)) and
is always included in agentView(A) (without consideration for the session num-
ber). This set is used to “explain” the inconsistency of sol . If inconsAV (A, sol) =
∅, then sol is consistent with the agent view and should be proposed as a local so-
lution and added to the proposed set, as described in the following section.

3.4 Handling “complex” local problems

The well-known ABT and AWC algorithms were initially designed to handle problems
in which each agent encapsulates only one variable. Later, they expanded to handle
“real” local problems. They were extended using two distinct existing methods:

1. Each agent first solves its problem and finds all solutions. The problem is then
reformulated so that each agent contains only one variable, whose the domain

10 René Mandiau et al.

X0 X1 X2

X3X5X4 X6

A0

A1 A2

Fig. 3 DisCSP example

is composed of the set of all local solutions [32, 33]. For example, if agent A
encapsulates three variables X , Y and Z, and the intra-agent constraints lead to
one single solution, it can be reformulated as a single variable XA = {(X =
1), (Y = 1), (Z = 0)}.

2. “Virtual agents” are created so that each agent encapsulates a single variable [68].
With this method, agents do not need to find all local solutions before starting the
global search. However, this considerably increases the number of agents, and
subsequently the number of messages exchanged.

We chose to use and improve the first method. Each agent solves its CSP and
stores solutions. However, it is not necessary to find all local solutions. First, only
solutions that are different from the interface variables can be considered (see Prop-
erty 1 below). Second, the global search is performed at the same time as the local
search. Therefore, a global solution can be found before all agents finish solving
their local problems. Those solutions that are compatible with the agent’s current
agentView can be considered the search priority. All solutions compatible with the
agent’s current agentView must be tested before a backtrack request is sent.

Property 1 Given two agents, A and A′, a message from agent A, notifying agent A′

of a change in instantiation (. . . , X = a, . . .) to (. . . , X = b, . . .), is worth sending
if and only if ∃X ′ ∈ var(A′) s.t. there is an inter-agent constraint involving both X
and X ′.

Proof A′ must find solutions that are consistent with agent A, and thus must check
the inter-agent constraints between A and A′ (i.e., formally: {C ∈ Cinter | var(C) ⊆
var(A) ∪ var(A′)}). Knowing the domains/values of var(C) is sufficient; the other
variables are not relevant. ut

When an agent changes its current local solution, it sends 〈OK?〉 messages to its
acquaintances. According to Property 1, only the projection of the solution onto the
appropriate interface variables is relevant. With the example shown in Figure 3, agent
A0 would inform agents A1 and A2 of its current solution using the following two
messages:

– 〈OK?, (A0, {(X0 = 0), (X1 = 0)}, session = 0)〉 to agent A1
– 〈OK?, (A0, {(X2 = 0)}, session = 0)〉 to agent A2.

If agent A receives a backtrack request pertaining to a subset of its current so-
lution (e.g., {(X = 0)}), agent A should avoid suggesting any solution containing
{(X = 0)} during its current session. For this purpose, all solutions from sol(A)

Multi-variable Distributed Backtracking with Sessions 11

containing {(X = 0)} are added to the proposed set (this method comes from the
OGDiBT algorithm [3]).

When the agentView(A) is modified, agentAmust find a solution consistent with
all triples in the set. The simplest method is to scan sol(A) for a consistent solution.
This method requires a very large number of constraint checks. Moreover, when agent
A receives a new 〈OK?〉message and closes its session, all computations are lost. The
inconsAV map was designed to solve this problem. inconsAV (A, sol) contains the
subset of agentView(A) for which sol is inconsistent. Iff inconsAV (A, sol) = ∅,
then sol is consistent with agentView(A). The Partially Interchangeable Neighbor-
hoods (PINs) defined below are used in the checkAgentView procedure and the
submitAssign function described in the following section to determine if a solu-
tion is consistent with some agentView elements.

For example, for agentA, sol /∈ proposed and inconsAV (A, sol) = {(A0, {X =
0}), (A1, {Y = 0})} mean that sol has not yet been proposed in the current session,
and that sol is inconsistent with agentView(A). agentView(A) is updated upon re-
ception of 〈OK?〉messages: proposed set is then emptied, and all inconsAV (A, soli)
sets are updated. This feature prevents many constraint checks, but requires some
computations to update inconsAV sets. This PIN feature is borrowed from the re-
search of Ezzahir et al. [19] and has been introduced into our algorithm [50]: the
objective of this feature is to surmount this computation time. PINs are based on the
projection (denoted ↓) of local solutions onto a constraint. Projection and PIN are
defined as follows:

Definition 5 (Projection ↓) The projection of a local solution sol , constituted of a
set of (Xi = vi) pairs on C, is defined as S ↓ C = {(X = v) ∈ sol | X ∈ var(C)}.

Definition 6 (Partially Interchangeable Neighbourhood) Two local solutions of
an agent, sol1 and sol2, are said to be a Partially Interchangeable Neighborhood
(PIN) in terms of inter-agent constraint C iff sol1 ↓ C = sol2 ↓ C. All solutions soli

that share the same projection in terms of C are said to be in the same PIN set.

Property 2 Iff sol satisfies C, then all solutions from the same PIN set as sol in terms
of C will satisfy C.

Proof Any constraint C can be defined as a set of allowed instantiations, called
rel(C). The constraint is satisfied by a given instantiation I iff I ∈ rel(C). By defini-
tion of a CSP, a solution sol satisfies C iff sol ↓ C ∈ rel(C). Thus, iff sol0 satisfies
C and soli ↓ C = sol0 ↓ C, soli satisfies C. ut

Given agent A, for each inter-agent constraint C involving a variable of var(A),
we define PINSets(A,C) = {PIN0, . . . ,PINk} as the partition of sol(A) such that
PIN0, . . . ,PINk are distinct PIN sets. When an agent looks for a new satisfiable
local solution in terms of C, it first checks the first solution of each PIN set from
PINSets(A,C). If the first solution violates C, then it can skip directly to the next
PIN set.

Figure 4 gives an example. Agent A2 encapsulates three variables: X3, X4 and
X5. Inter-agent constraints C0 to C2 connect A2 to agents A0 and A1. For each

12 René Mandiau et al.

A0 A1

A2

X0 = ? X1 = 0 X2 = 0

X4X3 X5

Local solutions sol(A2):

S0 (X3 = 0, X4 = 0, X5 = 0)
S1 (X3 = 0, X4 = 0, X5 = 1)
S2 (X3 = 0, X4 = 1, X5 = 0)
S3 (X3 = 0, X4 = 1, X5 = 1)
S4 (X3 = 1, X4 = 0, X5 = 0)

PIN(A2, C0) = {{S0, S1, S2, S3}, {S4}}

PIN(A2, C1) = {{S0, S1, S4}, {S2, S3}}

PIN(A2, C2) = {{S0, S2, S4}, {S1, S3}}

C0 C1 C2

Fig. 4 Example using of PIN sets

inter-agent constraint, a PIN set is created. PIN(A2, C1) = {{S0, S1, S4}, {S2, S3}}
means that iff S0 does not satisfy C1, then neither S1 nor S4 will satisfy it, so the
algorithm may skip to S2 in the next PIN set. Then, if S2 does not satisfy C0, we
know from PIN(A2, C0) that S3 will not satisfy C0. The agentView(A2) is thus
inconsistent, and a backtrack request must be built.

PINs help reduce the number of constraint checks needed to update the inconsAV
maps. Our experimental results (see Section 6) show that our algorithm benefits from
this reduction. In practice, since using PIN sets requires computing and memorizing
all local CSP solutions, they may not be practical if the local problems have too
many solutions. In this case, solutions can be recalculated instead of being stored
using a local solver 2 (e.g., CSP4J [64]) or using an algorithm to detect conflicts
(e.g., QuickXplain [37]). PIN sets can then be emulated using local nogoods. In the
preceding example, if the first computed solution S0 does not satisfy C1, then the
local nogood X4 6= 0 is temporarily added to the local problem. Thus, the local
solver will automatically filter out the other solutions from the same PIN set.

3.5 Algorithm

When DBS starts, all agents start solving their local problems The submitAssign
function is the entry point for each agent. As soon as an agent finds a local solution, it
notifies its lower acquaintances (according to Property 1) via an 〈OK?〉 message. As
shown in Figure 5, our algorithm is composed of two listeners, three procedures and
one function that communicate with each other (are listeners and are proce-
dures or functions that can send messages). In the following algorithms, self is used
to identify the current agent executing the code.

2 Local solver means here a mechanism (like constraint propagator) to find a solution for the local CSP.

Multi-variable Distributed Backtracking with Sessions 13

receive 〈OK?, . . . 〉 closeSession backtrack

receive 〈BT, . . . 〉 checkAgentView submitAssign

Fig. 5 Listener/procedure/function calls in DBS

Listener 1 (receives 〈OK?〉message) is used to update the agentView set (Line 1),
to close the agent’s session (Line 2) and to start the search for a solution consistent
with the agentView (Line 3).

Listener 1: when receives 〈OK?, (A, sol, s)〉
1 update agentView with (A, sol, s);
2 closeSession();
3 checkAgentView(A, OK?);

Listener 2 (receives 〈BT〉message) is used to handle backtrack requests. First, the
algorithm checks whether or not the request is in the current session and whether or
not it is not obsolete (Line 1). receivedBtVal , totalBtSet, proposed and currentSol
are updated (Lines 2 to 5). Note that totalBtSet is expanded with elements from btSet
that pertain to variables that are not yet assigned in totalBtSet (this set is updated by
the] operator). Finally, the agent starts searching for another consistent solution by
calling checkAgentView (Line 6).

Listener 2: when receives 〈BT, (A, (X = v), s), btSet〉
1 if A = self ∧ s = currentSession ∧ (X = v) /∈ receivedBtVal then
2 receivedBtVal ← receivedBtVal ∪ {(X = v)} ;
3 totalBtSet ← totalBtSet] btSet ;
4 proposed ← proposed ∪ {sol ∈ sol(self) | (X = v) ∈ sol} ;
5 if (X = v) ∈ currentSol then currentSol ← null;
6 checkAgentView(null, BT) ;

The] operator is used to add new assignment information to totalBtSet without
altering previous data. In other words, only new assignments are added to the data
structure, but already instantiated variables are ignored. Formally, the] operator is
defined as following:

Definition 7 (]) Let T1 and T2 be two sets of triples (A, (X = v), s), where A is an
agent, X is a variable, v is a value from dom(X), and s is a session number. With
“_” denoting any value or session, we define:

T1] T2 = T1 ∪ {(A, (X = v), s) ∈ T2 | @(A, (X = _), _) ∈ T1}

14 René Mandiau et al.

Procedure closeSession
1 currentSol ← null ;
2 currentSession ← currentSession + 1 ;
3 receivedBtVal ← ∅;
4 proposed ← ∅ ;
5 foreach sol ∈ sol(self) do update inconsAV (self , sol)

The closeSession procedure mainly involves reinitializing the data structures
in order to search for solutions consistent with the new agentView. The current so-
lution is reset (Line 1) and the session number is incremented (Line 2). Next, the
receivedBtVal set is emptied (Line 3). This data structure is used to save information
pertaining to local solutions that were inconsistent according to the agent’s lower ac-
quaintances. All previously proposed solutions are now obsolete, so the proposed set
is also emptied (Line 4). Finally, the inconsAV map is updated according to the new
agentView (Line 5).

Function submitAssign: boolean
1 select sol ∈ (sol(self)− proposed) | consistent(sol, agentView) ;
2 if sol is null then return false ;
3 currentSol ← sol ;
4 proposed ← proposed ∪ {sol} ;
5 foreach A ∈ Γ+(self) do
6 subset ← {X | ∃(C,X, Y) ∈ Cinter × var(self)× var(A) | {X,Y } ⊆ var(C)};
7 send 〈OK?, (self , currentSol ↓ subset, currentSession)〉 to A ;

8 return true;

The submitAssign function is used to select a solution consistent with the
agentView (Line 1). The solution is then transmitted to the agent’s lower acquain-
tances according to Property 1 (Lines 5 to 7).

Procedure checkAgentView(Ak: Agent, typeOfMessage: MsgType)
1 if typeOfMessage = OK? ∧ (∀sol ∈ sol(self), sol ∈

proposed ∨ ¬consistent(sol,{(A, _, _) ∈ agentV iew | A � Ak})) then
2 backtrack(Ak , typeOfMessage) ;
3 else if ¬submitAssign() then
4 backtrack(null, typeOfMessage);

The checkAgentView procedure is used to verify whether or not a given solu-
tion is consistent with the agentView (Line 1). If solutions exist, the submitAssign
function is called (Line 3). If no solution exists, or if submitAssign does not find
any further solution, a backtrack is requested (Lines 2 & 4).

The backtrack request is called in checkAgentView and is used to send
backtrack messages if necessary.

Multi-variable Distributed Backtracking with Sessions 15

Procedure backtrack(Ak: Agent, typeOfMessage: MsgType)
1 if Ak 6= null then
2 select

T = (Ak, (X = v), s) ∈ agentView | ∀(A′, (X′ = _), _) ∈ agentView, Ak � A′ ;
3 if T 6= null then
4 btSet ← {(A′ � Ak, (X′ = v′), s′) ∈ agentView] totalBtSet} ;

5 else
6 if typeOfMessage = OK? then
7 select

T = (A, (X = v), s) ∈ agentV iew | ∀(A′, (X′ = _), _) ∈ agentView, A � A′;
8 if T 6= null then
9 btSet ← {(A′ � A, (X′ = v′), s′) ∈ agentView] totalBtSet};

10 else
11 btSet ← agentView] totalBtSet;
12 select T = (A, (X = v), s) ∈ btSet | ∀(A′, (X′ = _), _) ∈ btSet, A′ � A;
13 if T 6= null then
14 btSet ← btSet − {(A, (X = v), s)} ;

15 if T = null then
16 broadcast 〈STOP 〉 to acquaintances and terminate;

17 send 〈BT, T, btSet〉 to A;
18 totalBtSet ← totalBtSet − btSet− {T};
19 if T ∈ agentView then
20 agentView ← agentView − {T};
21 else if typeOfMessage = BT then
22 closeSession() ;
23 submitAssign() ;

When it is possible to find triple T = (A, (X = v), s) in agentView or agentView
] totalBtSet (Line 2, 7 or 12), the search for T depends on input agent Ak and input
message type typeOfMessage. If Ak 6= null, then triple T = (A, (X = v), s)
is found in agentView with A = Ak. The Ak 6= null case happens when the
typeOfMessage received by checkAgentView is OK? and all the local solu-
tions already proposed are inconsistent with agentView (Lines 2 to 4). If Ak = null
then there are two possible cases. In the first case, typeOfMessage = OK?, the
agent tries to find triple T = (A, (X = v), s) in agentView from higher acquain-
tances (Lines 6 to 9). In the second case, typeOfMessage = BT, the agent tries to
find a triple T = (A, (X = v), s) in agentView] totalBtSet from lower acquain-
tances (Lines 10 to 14). In all the previous cases, the btSet of the current agent is
updated (Line 4, 9 or 14).

A backtracking message in accordance with selected triple T (Line 17) is then
sent to agentA. Set totalBtSet is then updated (Line 18). If T is already in agentView,
then it is removed from this set (Lines 19 and 20). Otherwise, if typeOfMessage =
BT, then the agent closes its session and sends a new assignment to its lower ac-
quaintances (Lines 21 to 23).

If the DisCSP is inconsistent, then it is not possible to find a triple T , the 〈STOP 〉
message is broadcasted and finally global DisCSP problem solving will terminate
(Lines 15 and 16).

16 René Mandiau et al.

3.6 Example

Figure 6 shows a distributed graph coloring problem, with three agents A0, A1 and
A2. Each agent encapsulates three variables, each of which can take one of two col-
ors: or . The goal is to color each variable so that two adjacent variables do not
have the same color. Two variables are called adjacent if they are connected by the
same constraint. The priority of agents is A0 � A1 � A2. Messages sent by DBS are
shown on Figure 7.

A0

A1

A2

X0 X1X2

X3X4X5

X6 X8 X7

Fig. 6 A distributed graph coloring problem

A0 A1 A2

M1 〈OK?, (A0, (X1 =), s = 0)〉

M2 〈OK?, (A0, (X1 =), s = 0)〉

M3 〈OK?, (A1, (X3 =), s = 0)〉

M4 〈OK?, (A1, (X3 =), s = 1)〉

M5 〈BT, (A1, (X3 =), s = 1), btSet = {(A0, {(X1 =)}, s = 0)}〉

M6 〈BT, (A0, (X1 =), s = 0), btSet = ∅〉

M7 〈OK?, (A0, (X1 =), s = 0)〉

M8 〈OK?, (A0, (X1 =), s = 0)〉

M9 〈OK?, (A1, (X3 =), s = 2)〉

M10 〈BT, (A1 = (X3,), s = 2), btSet = {(A0, {(X1 =)}, s = 0)}〉

M11 〈BT, (A0, (X1 =), s = 0), btSet = ∅〉

Fig. 7 Messages sent by the agents to solve the problem in Figure 6

Each agent solves its local CSP and finds a local solution: A0 finds the solution
(X0 = , X1 = , X2 =), A1 finds (X3 = , X4 = , X5 =), and A2 finds
(X6 = , X7 = , X8 =).

Multi-variable Distributed Backtracking with Sessions 17

A0 notifies its acquaintances through messages M1 and M2. The agentView of
A1 and A2 are updated with (A0, (X1 =), s = 0). The current session of A1 and
A2 are incremented to 1.

Simultaneously,A1 notifies its acquaintances through messageM3. The agentView
of A2 is updated with (A1, (X3 =), s = 0). Now, the agentView of A2 equals
{(A0, (X1 =), s = 0), (A1, (X3 =), s = 0)} and its current session is incremented
to 2. The local solution of A2 is consistent with its agentView.

However, A1 detects an inconsistency (X1 = and X3 =) between its local
solution and its agentView. A1 finds another local solution ((X3 = , X4 = ,
X5 =). It sends the message M4.

M4 is received by A2. Consequently its agentView is updated with (A1, (X3 =
), s = 1) and (A1, (X3 =), s = 0) is removed, i.e., the agentView of A2 equals
{(A0, (X1 =), s = 0), (A1, (X3 =), s = 1)}. Its current session is incremented
to 3.

A2 detects an inconsistency (X3 = and X7 =) between its local solution
and its agentView and cannot find another local solution. It thus sends a backtrack
requestM5 to the agentA1. In the backtrack procedure (Lines 1 to 4), the selected
triple T is (A1, (X3 =), s = 1) and btSet = {(A0, {(X1 =)}, s = 0)}. At the
end of backtrack procedure, (A1, (X3 =), s = 1) is removed from agentView
(i.e., {(A0, (X1 =), s = 0)} remains).

A1 receives M5 (Listener 2). A1 is still in session 1 and (X3 =) has not yet
been received ((X3 =) /∈ receivedBtVal . To avoid repeatedly processing the same
backtrack request from other agents, (X3,) is stored in receivedBtVal . If there are
no more local solutions, the backtrack request will be forwarded to a higher ac-
quaintance. totalBtSet is updated (i.e., totalBtSet = {(A0, {(X1 =)}, s = 0)})
for this purpose. At this step, we know that all local solutions with (X3 =)
become inconsistent, so the proposed set is updated accordingly. The current solu-
tion is discarded. The checkAgentView procedure is called with Ak = null and
typeOfMessage = BT.

With these parameters, in checkAgentView the submitAssign procedure
is executed on line 3. Since the unique solution consistent with its agentView has
already been proposed in session 1, submitAssign immediately returns false.

Finally, the checkAgentView procedure ends with a call for the backtrack
procedure with Ak = null and typeOfMessage = BT. Lines 10 to 14 of the
backtrack procedure are executed to forward the backtrack request. In the current
state ofA1, we have agentView = totalBtSet = {(A0, {(X1 =)}, s = 0)}, which
is thus assigned to btSet. Line 12 selects the agent in btSet with the highest priority;
we have then T = (A0, {(X1 =)}, s = 0) and the tuple is removed from btSet,
which is now empty. M6 is now sent to A0, and T is removed from totalBtSet and
agentView for A1, which are now empty.

A0 receives this message. Like for message M5 above, A0 uses proposed to store
the information that all solutions with (X1 =) should not be proposed again and
calls checkAgentView.

18 René Mandiau et al.

However, there is another consistent local solution: (X0 = , X1 = , X2 =).
submitAssign is thus executed normally: the current solution is switched to the
new local solution, the OK? messagesM7 andM8 are sent toA1 andA2 respectively,
and true is returned, which ends checkAgentView.

Since A2 receives M8, it updates its agentView from {(A0, (X1 =), s = 0)} to
{(A0, (X1 =), s = 0)}, increments its session number and calls checkAgentView
(with Ak = A0 and typeOfMessage = OK?). There is a consistent local solution
for A2 with (X6 = , X7 = , X8 =).

Since A1 receives M7, it closes its session, which is incremented from 1 to 2, and
selects a consistent solution: (X3 = , X4 = , X5 =). It notifies A2 of this new
solution with M9.

Since no solution is consistent with its agentView (i.e., {(A0, (X1 =), 0), (A1,
(X3 =), 2)}), A2 sends a backtrack request M10 to A1. This is the same situation
as when A1 receives M5. A1 propagates the backtrack request to A0 with message
M11. A0 receives this message. Since its two local solutions were already proposed,
A0 affirms that there is no solution for the DisCSP and sends a 〈STOP〉 message to
all agents to terminate the search.

4 Properties of the DBS Algorithm

In this section, we prove that DBS is sound (4.1), complete (4.2) and always termi-
nates in finite time (4.3). Next, we discuss space complexity (4.4) and worst-case
time complexity (4.5).

4.1 Soundness

Theorem 1 DBS is sound: whenever DBS halts and reports a solution, all variables
of all agents are assigned a value and all inter- and intra-agent constraints are satis-
fied.

Proof When DBS detects a solution, we assume that all agents are in a stable state,
which means that no more messages are sent. If an agent detects a violated constraint,
then it will send a backtrack message. This would refute our assumption. This proof
is similar to proofs of soundness for most ABT variants (e.g., [7]). ut

4.2 Completeness

Theorem 2 DBS is complete.

The following proof is based on completeness proofs DDB [6], ABT [66] and DBS
with single-variable problem [49] algorithms. We prove the completeness of DBS in
three steps:

Multi-variable Distributed Backtracking with Sessions 19

1. We prove that a simplified version of DBS, called DBSng, in which all agents
save all forbidden instantiations (which are equivalent to ABT’s nogoods) and
encapsulate only one variable, is equivalent to ABT, and thus is complete.

2. We show that saving all forbidden instantiations is not necessary, and we show
that DBS, restricted to one variable per agent, keeps all the properties of DBSng in
terms of completeness.

3. We prove that encapsulating multiple variables per agent does not affect com-
pleteness.

4.2.1 DBSng is complete

DBSng is a variant of DBS in which all forbidden instantiations are stored in a set
called FISet. We remind the reader that the full DBS algorithm temporarily saves
selected forbidden values in receivedBtVal . We prove that DBSng is equivalent to
ABT.

1. Saving forbidden instantiations: in ABT, when an agent receives a nogood, it adds
it to its nogoods list. In DBSng, when agent A receives a backtrack request (i.e., 〈BT,
(A, value, session), btSet〉), it checks its agentView(A) and deduces a full forbidden
instantiation in the following manner: if agentView(A) = {(X1, v1, s1), . . . , (Xk, vk,
sk)}, the forbidden instantiation {(X1, v1, s1), . . . , (Xk, vk, sk), (XA, value, session)}
is added to FISet, which is never emptied. DBSng saves the forbidden instantiations
in the same way as ABT handles nogoods.

2. Context of a backtrack message: unlike ABT, which attaches nogoods to backtrack
messages, DBSng uses sessions. ABT assumes that agent A receives the following
nogood: {(X1, v1), . . . , (Xk, vk), (XA, value)}. ABT would detect an inconsistency
and request a backtrack iff both of the following two conditions are met:

(a). value is agent A’s current value, and
(b). ∀(X, v) ∈ nogood , either (X, v) ∈ agentView(A) or @(X, _) ∈ agentView(A).

With DBSng, if agent A receives the message 〈BT, (A, value, session), btSet〉, it
would consider the backtrack request if both of the following conditions are met:

(a). value is agent A’s current value, and
(b). the session number attached to the message is equal to agent A’s session number.

The items (a) for both ABT and DBSng are identical. For DBSng, item (b) will
be met iff agent A has not received any 〈OK?〉 message since it last sent its current
value. In this case, agentView(A) is not modified and is equivalent to item (b) in
ABT. This proves that DBSng and ABT use a similar context.

3. Selecting the recipient of a backtrack message: ABT and DBSng do not always
select the same recipient when they send a backtrack request. In both algorithms,
when agent A receives an 〈OK?〉 message from agent A′, it updates agentView(A)
accordingly. If no solution can be found:

20 René Mandiau et al.

In ABT, agent A builds a nogood for each subset of agentView(A) for which no
solution exists. A backtrack message is then sent to the lowest priority agents that
appear in the nogood list.

In DBSng, if agentA does not find any solution according to the higher priority agents
other thanA′ appearing in agentView(A) (see Line 1 of the checkAgentView
procedure), the backtrack message is sent toA′. If a solution exists, the backtrack
message is sent to the lowest priority agent appearing in agentView(A).

ABT sends the backtrack message directly to the conflicting agent, whereas DBSng

sends the message either to conflicting agent A′ or to a lower priority agent than A′.

4. Adding relationships: During the search, the ABT algorithm adds links dynami-
cally in order to forward backtrack requests to agents that do not appear in the agent’s
agentView. In the worst case,this is actually equivalent to building a complete com-
munication network between all agents. DBSng always considers that all agents can
be reached.

Upon reception of a 〈BT〉message by agentA, ABT will forward it in the follow-
ing way. If the nogood attached to the backtrack message contains an agent A′ that
agent A does not know, it adds agent A′ to its agentView(A) and starts searching for
a compatible solution. If no solution exists, agent A builds a nogood for each incon-
sistent subset of its agentView(A). For each nogood, agent A sends the backtrack
request to the lowest priority agent of its higher acquaintances and then removes it
from agentView(A).

In DBSng, when agent A receives a backtrack request with an attached btSet con-
taining (A′, X = v, s) with A′ /∈ agentView(A), it does not add this information to
its agentView. This would not affect the solutions found by the agents, as no con-
straint exists between X and any variable of agent A. However, if agent A does not
find any solution after the backtrack request, it forwards the request to the lowest pri-
ority agent from agentView(A)] totalBtSet, which contains information about A′.
The behavior is thus the same as that of the ABT algorithm’s.

To finish the comparison between ABT and DBSng, we compare the contents of
a backtrack message. To transmit a message from agent A to agent A′, ABT at-
taches a nogood that includes the last known value v′ from the variable in agent
A′ obtained from agentView(A). DBSng sends the tuple (A′, XA′ = vA′ , sA′) from
agentView(A)](btSet] totalBtSet) (btSet comes from the backtrack message that
caused agent A to backtrack), along with other information that will permit agent A′

to forward the backtrack message if necessary.
This shows that DBSng, a variant of DBS that saves all forbidden instantiations,

strictly has the same behavior as ABT (i.e., nogoods, messages content and recipient,
and dynamic relationships). Since ABT is complete [66], so is DBSng. ut

4.2.2 Single-variable DBS is complete

DBS has the same properties as DBSng. The only difference is that DBS removes ob-
solete forbidden instantiations. It is quite clear that removing forbidden instantiations
cannot prune the search space, so no solution can be lost.

Multi-variable Distributed Backtracking with Sessions 21

4.2.3 Multi-variable optimizations

We prove that the optimizations that added to efficiently handle multi-variable local
problems in DBS do not affect the algorithm’s completeness. DBS only considers lo-
cal solutions that differ in terms of interface variables: an agent that wants to transmit
its local solutions to its acquaintances does not send the whole solution (see Prop-
erty 1). When an agent receives a backtrack request, the instantiation of the related
interface variable is altered. This method does not change the completeness of the
algorithm [3]. Agents use PINs to search for consistent local solutions, which does
not affect completeness [19]. DBS saves the origin of the inconsistency of each local
solution. With the PINs, all solutions are still tested; only the checking method is
modified. This does not affect the completeness of the algorithm.

The three previous steps show the completeness for DBS. ut

4.3 Termination

In this section, we prove that removing obsolete forbidden instantiations cannot lead
to infinite loops, which proves that DBS always terminates.

Lemma 1 Let agentA0 be the highest priority agent. AgentA0 can never be trapped
in an infinite loop, even though DBS removes obsolete forbidden instantiations.

Proof DBS reinitializes its receivedBtVal set, which contains forbidden instantia-
tions, only when an 〈OK?〉 message is received from a higher priority agent, or
when an agent sends a backtrack request to a higher priority agent. Since agent A0
is the highest priority agent, these events never occur and items in receivedBtVal
are never removed. Moreover, as the number of solutions of A0 is finite, the size of
receivedBtVal is bound in O(dn). Since A0 cannot reinitialize receivedBtVal , and
since it can receive only a finite number of instantiations, it cannot be in an infinite
loop. ut

Lemma 2 If given in the priority order considered by DBS, the first (k − 1) agents
are not in an infinite loop, reinitializing the receivedBtVal set cannot lead agent Ak

into an infinite loop.

Proof Let us assume that agent Ak sends and receives messages infinitely. This
means that agent Ak loses forbidden instantiations that it should have kept, since
its higher acquaintances have modified their local solution. Agent Ak removes for-
bidden instantiations when:

– Agent Ak receives an 〈OK?〉 message from a higher acquaintance; this incre-
ments agent Ak’s session.

– Agent Ak sends a backtrack message to higher acquaintance A that does not
appear in agentView(Ak), since A has changed its value; this increments agent
Ak’s session.

22 René Mandiau et al.

Since we assumed that agents A0 to Ak−1 are not in an infinite loop, this means
that they will stabilize, and ultimately stop sending 〈OK〉 messages. Thus, agent Ak

will never reach an infinite loop. ut

Theorem 3 DBS terminates.

Proof Lemmas 1 and 2 recursively prove that agents cannot reach an infinite loop,
even though DBS removes obsolete instantiations. Thus, DBS terminates. ut

4.4 Space complexity

Theorem 4 The space complexity of each agent running DBS is in O(Ndn) (where
N : total number of variables, n: maximum number of variables for each agent and
d: maximum domain size).

Proof The space requirements of a given agent depend on its stored context. The
complexity is capped by the inconsAV data structure. It may contain up to N triples
for each one of the O(dn) local solutions. Thus, the space complexity of each agent
is in O(Ndn). ut

The inconsAV data structure can consume a lot of memory when the number of
variables is high. We plan to improve this in the future.

4.5 Time complexity

Theorem 5 For a given agent A, eA is the number of intra-agent constraints, nA is
the number of variables of domain size less than dA encapsulated in A, and einter is
the number of inter-agent constraints. The worst-case time complexity of DBS is:

O(
∑

A∈A

eAd
nA

A + einterd
N)

Proof In the worst case, time complexity is the sum of the time required to solve local
CSP and the time of the global search. We consider that messages are sent and re-
ceived in constant time. The first step involves finding all solutions of all local CSPs.
For a given agent A, the complexity is O(eAd

nA

A), i.e., the first term. The second
step involves performing the global search of all agents. Each agent A can consider
O(dnA) solutions, and in the worst case, DBS must check the einter inter-agent con-
straints for all the O(

∏
A∈A dnA

A) ∈ O(dN) combinations of local solutions. ut

Since DBS is an asynchronous distributed algorithm, most of the work can be
done at the same time, especially the search for local solutions. Assuming that we
have one computing unit per agent with no additional cost, we can divide up the
search for local solutions among all CPUs. The wallclock time of the first term
O(

∑
A∈A eAd

nA

A) can then be replaced by O(maxA∈A eAd
nA

A).
We can observe that ∀A, dA ≤ d and nA ≤ n, and

∑
A∈A eA = eintra, which

leads to the simplified formulation for the worst-case time complexity:

O(eintrad
n + einterd

N)

Multi-variable Distributed Backtracking with Sessions 23

5 Message filtering

This section describes several techniques that can be used to filter out obsolete mes-
sages (i.e., deleting them before Listener 1 or 2), with no impact on the completeness
of the algorithm. The idea of global message processing to reduce the number of use-
less computations was also proposed by Brito & Meseguer [9]. These authors propose
partitioning the set of messages into sublists. Messages are then chosen according
to the sublist they appears in. The MHDC algorithm [59] also proposed a concept
similar to filters: “compactors”. When the inbox size exceeds a given threshold, the
filtering procedure takes priority and removes useless messages. These approaches
may be used to reduce the number of messages transmitted by existing algorithms
and to propose enhanced evaluations.

Our approach differs from these in the way we apply the filters. The filtering
process is applied as soon as an agent receives a message. The message is kept in the
inbox only if no filter could remove it. Filtered messages are messages that remain in
the agents’ inboxes. We call the inbox of a given agent A, IB(A) .

Filter 1 (F1) If more than one 〈OK?〉 message from a given agent A′ sits in IB(A),
only the latest 〈OK?〉 message should be considered, and the other messages can be
filtered out.

Since the work sessions of an agent can never decrease, if agent A′ sends several
〈OK?〉messages to agentA, then the latest 〈OK?〉message’s session number will be
greater than or equal to the session number of all other 〈OK?〉 messages sent by A′.

Suppose that several 〈OK?〉 messages from A′ remain in in IB(A). Let the most
recent message be mlast = 〈OK?, (A′, sol, s)〉. The other messages from agent A′

will be 〈OK?, (A′, sol ′, s′)〉 with either sol 6= sol ′ or s 6= s′.
Consider the three different cases:

s′ < s: the context of a message is defined by a session number. The messages with
an obsolete session number are ignored. If agent A processes this message of
session number s′, all other messages with s < s′ will become obsolete and can
be filtered out.

sol = sol ′ and s = s′: this case cannot occur since an agent cannot propose the same
instantiation during the same session.

sol 6= sol ′ and s = s′: we assume that the local search will not give the same solu-
tion twice. If agent A′ changed its solution sol ′ to sol , this was due to a backtrack
request for sol ′, and thus sol ′ becomes obsolete and can be ignored. Since we as-
sumed that each agent performs its local search using a tree-like search with static
variable ordering, we know that solutions will be given in order. Given Property 1,
this means that a single instantiation cannot be proposed more than once.

Filter 2 (F2) If agent A has several backtrack messages and at least one 〈OK?〉
message in IB(A), all backtrack messages can be removed.

Let us suppose that agent A processes the 〈OK?〉 message first. Agent A’s work
session will be incremented. All backtrack messages in IB(A) are obsolete since they
pertain to a local solution from an past agent A session.

24 René Mandiau et al.

Filter 3 (F3) If agent A has sent a backtrack message to agent A′, and this backtrack
message appeared in agentView(A), then until A has received an 〈OK?〉 message
from agent A′, it can remove all backtrack messages contained within IB(A).

Since agent A sent a backtrack message to agent A′, it will necessarily receive,
after a finite time, an 〈OK?〉 message from agent A′. This message will make all
backtrack messages from agent A’s lower acquaintances obsolete.

Filter 4 (F4) If agent A receives several 〈OK?〉 messages, it processes the messages
from the highest priority agents first.

This “filter” actually does not remove the messages from the agents’ inboxes.
F4 is a heuristic rather than a filter but we call it a “filter” for consistency reasons.
Since DBS is complete and asynchronous, it works regardless of the order in which
the messages are received. However, we still assume the following hypothesis: For a
given pair of agents, all messages are received in the order in which they were sent.

6 Experiments

We describe the various hypotheses (6.1) for the different experiments in the follow-
ing three sections (6.2 to 6.4).

6.1 Hypotheses for the experiments

Our algorithm was tested with graph coloring problems, which were also used to
evaluate the performances of Multi-AWC [68]. Each problem was randomly gener-
ated according to parameters 〈m,n, d, e〉. Following the standard notation, m is the
number of agents, n is the number of variables per agent, d is the number of val-
ues/colors, and e is the total number of constraints.

We used the JADE multi-agent platform [4]. This well-known multi-agent plat-
form automatically manages agent distribution, scheduling and message exchange.
We re-implemented each algorithm on our platform (in this paper, we refer to the
initial ABT version, which keeps all nogoods). We also compared DBS with different
stripped down versions:

– DBSP F : a version of DBS from which the PINs and filters have been removed
– DBSP : a version of DBS without the PINs
– DBSF : a version of DBS without the filters.

Each result presented in the tables is an average of over 100 experiments with
the same parameters, but each with a different random seed. For the different experi-
ments, we give “CPU time” (i.e., the amount of CPU time used by all agents), “User
time” (i.e., the total execution time observed by the JADE multi-agent platform. It
is wall-clock time includes agent and message management), “Max CPU time” (i.e.,
the amount of CPU time used by the slowest agent), Non-Concurrent Constraints
Checks (“NCCC”) [45] and the number of messages. Checked constraints are a com-
mon measure for centralized CSP and have been extended for DisCSP. NCCCi is

Multi-variable Distributed Backtracking with Sessions 25

Table 1 Filtering DBS obsolete messages: 〈m,n, d, e〉 = 〈15, 5, 5, 250〉

Filter(s) CPU Max CPU User NCCC Messages Max IB
time (s) time (s) time (s) (millions) size

DBSP F 28.5 12.9 24.1 63.6 37,208 648
DBSP 13.1 3.6 13.8 18.7 15,437 4

none (i.e.,DBSF) 28.1 12.2 23.4 59.9 36,960 668
F1 12.9 3.5 13.6 18.5 15,852 5
F2 25.8 10.9 21.4 55.5 34,053 657
F3 26.4 11.5 22.8 56.9 34,588 592
F4 24.6 11.0 22.1 55.2 31,022 566

F1 + F2 12.9 3.4 13.4 18.2 15,770 4
F1 + F2 + F3 12.4 3.4 13.5 17.9 14,732 4

DBS 9.3 2.3 11.9 13.6 10,146 4
Multi-ABT 0.7 0.2 4.5 0.9 1,127 16
Multi-AWC 1.8 1.5 25.2 2.8 320 12

AFC OoM

the maximum of number of checked constraints for all agents and NCCC is the sum
of these different NCCCi. For the first experiment, we also added “Max IB size”
(i.e., the maximum Inbox size for an agent).

We report on three series of experiments we conducted in order to compare our
algorithm with the others. We first evaluated our different techniques for obsolete
message filtering (6.2). Then, we observed the behavior of DBS in the case described
in (6.3), where each agent encapsulates a single variable. Finally, we compare DBS
to other DisCSP algorithms on problems with multiple variables per agent: Multi-
ABT [32, 33], Multi-AWC [68] and AFC [44] in (6.4).

Results were obtained on a computer equipped with a quad-core 2.8 GHz Intel
Core CPU and 3 GB of RAM. We noted also that the studied case is “OoM” when
the number of instances producing Out of Memory errors is greater than 30% of total
instances.

6.2 Experiment 1: Evaluating filtering for removing obsolete messages

We first evaluated the impact of our DBS obsolete message filtering properties, as
defined in Section 5. We adjusted the constraint generator to make two out of three
constraints be inter-agent constraints, in order to emphasize the impact of the filter-
ing properties. Table 1 shows the DBS results (with various filters combinations) for
solving distributed graph coloring problems generated with parameters 〈15, 5, 5, 250〉
(15 agents, each with 5 variables, a domain size of 5 values and 250 constraints). For
reference, we also provide the results for DBSP F and DBSP .

The tests for AFC led to 52% out of memory errors for the different instances.
We note also that DBS is less efficient than the two existing algorithms. There are
numerous messages exchanged for DBSP F ; however, Table 1 shows that the different
filters significantly reduce this number. The F1 filter avoids most obsolete messages;

26 René Mandiau et al.

Table 2 Impact of the number of agents: 〈m,n, d, e〉 = 〈m, 1, 3, 2.3m〉

m ABT AWC AFC DBSP F DBSP DBSF DBS

User time (s) 4.2 6.1 5.6 4.2 4.2 4.2 4.2
CPU time (s) 3.87 0.52 0.11 3.96 3.79 3.85 3.76

15 Max CPU time (s) 0.73 0.08 0.03 0.62 0.6 0.6 0.58
Messages (·103) 20.3 3.8 0.6 20.5 19.4 19.8 19.1

NCCC (·103) 275 158 4 34 33 34 31

User time (s) 4.5 8.8 6.6 7.5 7.3 7.3 7.4
CPU time (s) 4.0 8.8 1.9 12.1 12.5 12 12.1

30 Max CPU time (s) 0.4 0.6 0.2 1.1 1.2 1.1 1.1
Messages (·103) 20.1 35.3 9.8 20.5 19.4 19.8 19.1

NCCC (·103) 306 19,062 122 67 70 68 67

User time (s) 6.2 40.1 19.5 45.3 45.3 49 41.9
CPU time (s) 8.1 100.3 51.6 123.7 124.6 138.5 116

45 Max CPU time (s) 0.5 7.8 3 10.2 10.2 11.9 8.6
Messages (·103) 27.5 13.3 2.2 566.1 571.9 637.2 529.1

NCCC (·103) 656 195,398 2,915 573 572 638 530

User time (s) 16.9 OoM 690.2 478 443.8 442.3 436.9
CPU time (s) 38.7 386.1 1,421.9 1,329.5 1,340.5 1,315.0

60 Max CPU time (s) 1.9 103.4 90.6 80.2 83.9 81.0
Messages (·103) 147.5 211.9 6,581.7 6,137.2 6,160.5 6,005.1

NCCC (·103) 4,321 55,175 5,826 5,558 5,604 5,191

User time (s) 67.1 OoM 1,179 1,154.7 1,220.7 1,149.3
CPU time (s) 208.4 3,530.7 3,461.6 3,674.7 3,434.8

75 Max CPU time (s) 10.6 203.5 197.1 230.8 173.3
Messages (·103) 445.5 16,096.9 15,824.4 16,704.4 15,929.5

NCCC (·103) 27,219 12,805 12,390 13,868 12,046

additional filters always result in increased performance for nearly all metrics. In
particular, the Max Inbox size metric demonstrates that the efficiency of the filters
reduces the number of pending messages.

6.3 Experiment 2: Evaluating DBS with single-variable problems

This second experiment addresses the evaluation of the special case of one variable
per agent, with one agent encapsulating each variable. Table 2 shows results for a
DisCSP generated with the parameters 〈m, 1, 3, 2.3m〉. We note that AFC is unable
to solve the 100 instances due to a memory problem when m = 75 (represents 50%
of the out of memory issues) whereas AWC gives 50% out of memory for m = 60.

The more agents there are, the more efficient the ABT algorithm is (fewer mes-
sages and less CPU time than DBS). We observe that when the number of agents is
high (m = 75), only ABT and DBS give results. Unlike ABT, DBS does not require
the computation of all inconsistent subsets of the agentView to build backtrack mes-
sages, which is very costly. Once again, the message filtering properties help reduce
the number of messages. When DBS is used in the single-variable-per-agent case,
PINs are not useful since the only variable is an inter-agent variable. The addition of
filters is insufficient to decrease computational time for DBS. This is not surprising,

Multi-variable Distributed Backtracking with Sessions 27

because the compromise between time and the number of inter-agent messages is in-
adequate (accepting additional messages led to additional time). In the single-variable
context, we believe that additional filters should be investigated (without maintaining
the completeness of our algorithm).

6.4 Experiment 3: Evaluating DBS with multi-variable problems

In this section, we experiment DBS on handling multi-variable problems. We ad-
justed the constraint generator to more or less obtain the same number of inter- and
intra-agent constraints. As reported by Yokoo and Hirayama [68], a homogeneous
distribution would result in a relatively low number of intra-agent constraints. More
specifically, we tested the impact of two parameters on the performance of the algo-
rithms: the number of agents m and the number of variables per agent n (we set d to
3 colors).

Table 3 focuses on smaller DisCSP (m = 2 to 7 agents, n = 5 variables). The
number of constraints is set to 2N = 10m, since there are not enough variables en-
capsulated in the agents to contain half of the DisCSP’s constraints. This table shows
that DBS is more efficient (or equivalent to) its counterparts, even in the stripped
down DBSP and DBSF versions. The relatively poor performance of Multi-AWC and
AFC seem to come from the one-virtual-agent-per-variable scheme, which generates
many messages, and the minimal nogoods computing, which is very costly. The re-
sults show that saving all nogoods within Multi-ABT implies numerous NCCCs.

In Table 4, we set m to 15 agents. Each agent encapsulates the same number of
variables n (N = nm). We varied n from 1 to 13. To obtain hard problems, we chose
a number of constraints e close to the phase transition: e ≈ 2.3N = 34.5n [11]. This
table does not include the results due to memory problems: Multi-AWC produces
more than 30% “OoM” for n > 7 and AFC generates more than 45% “OoM” for
n > 5.

The results show that successful PINs reduce the number of NCCCs and that
filters greatly reduce the number of exchanged messages. However, PINs tend to in-
crease the number of messages. DBS performs better than Multi-ABT in terms of CPU
time and NCCCs (even for DBSP F), and the ratios seem to grow with the number of
variables per agent. DBSP F and DBSF send more messages than Multi-ABT, which
is an expected result. Filters significantly reduce the number of messages, so much
so that DBSP obtains a lower number than Multi-ABT.

However, when the PINs and filters are combined, the decrease in NCCC does
not always succeed in compensating for the cost of the calculation of the PIN and
additional messages. A way to solve this problem may be a solution introduced by
the AAS algorithm [58]: exchanged messages are based on a set of partial solutions
(Cartesian product of assignments to different variables). In this case, AAS involves
an aggregation of this list of assignments.

Table 2 and Table 4 show that the algorithms are more efficient when a translation
from a multi- to single-variable problems is avoided. Appropriate handling of multi-
variable problems reduces the number of exchanged messages, as expected.

28 René Mandiau et al.

Table 3 Impact of the number of agents: 〈m,n, d, e〉 = 〈m, 5, 3, 10m〉

m Multi-ABT Multi-AWC AFC DBSP F DBSP DBSF DBS

User time (s) 4.2 12.6 9.9 4.2 4.2 4.2 4.2
CPU time (ms) 6 18 12 21 21 25 22

2 Max CPU time (ms) 5 11 11 17 17 19 18
Messages 32 112 11 28 28 28 28

NCCC (·103) 16.9 27.2 1.4 0.9 0.9 0.9 0.9

User time (s) 4.2 14.3 10.5 4.2 4.2 4.2 4.2
CPU time (ms) 548 69 22 36 38 33 30

3 Max CPU time (ms) 290 28 15 23 23 22 19
Messages 2,989 340 29 78 77 77 77

NCCC (·103) 1,598 131 5 2.7 2.7 2.7 2.7

User time (s) 4.2 16.8 12.0 4.2 4.3 4.2 4.2
CPU time (ms) 698 136 40 76 89 74 78

4 Max CPU time (ms) 321 47 23 37 41 36 38
Messages 3,501 566 52 407 392 334 392

NCCC (·103) 1,836.7 448 13.3 12 11.6 10.3 11.6

User time (s) 4.3 28.7 28.9 4.2 4.2 4.2 4.2
CPU time (ms) 599 144 61 126 112 111 112

5 Max CPU time (ms) 249 46 32 56 46 47 47
Messages 2,923 691 64 664 500 517 506

NCCC (·103) 1,287 564.1 28.2 18.6 14.4 15.3 14.4

User time (s) 4.3 19.1 14.1 4.3 4.3 4.3 4.3
CPU time (ms) 831 326 139 345 392 321 321

6 Max CPU time (ms) 297 86 72 110 124 101 102
Messages 3,876 1,173 122 1,887 2,128 1,764 1,780

NCCC (·103) 2,112.1 1,614.6 104.2 43.3 48.8 40.9 41.4

User time (s) 4.3 29.3 14.8 4.5 4.4 4.4 4.4
CPU time (ms) 906 1,272 486 343 380 343 393

7 Max CPU time (ms) 291 311 226 111 118 107 117
Messages 4,120 1,893 208 1,864 2,061 1,847 2,078

NCCC (·103) 1,906.3 7,940.5 302.6 40.1 42.9 36.5 40.5

7 Conclusion

We proposed an algorithm, called Distributed Backtracking with Sessions (DBS), that
is applied to solve DisCSP containing several variables per agent. Each agent encap-
sulates a “complex problem”, with different variables (i.e., local variables and inter-
face variables) and different constraints (i.e., intra-agent and inter-agent constraints).
Each agent solves its local problem and then finds all solutions. The global search
is performed at the same time as the local search, and instead of using nogoods to
establish a context for the backtrack messages, DBS uses sessions. The sessions al-
low us to avoid computing nogoods: the message processing is thus much faster even
though more messages are processed.

The completeness of the DBS proof was described in three steps. First, we proved
the completeness of a single-variable version per agent, called DBSng, in which all
agents save all forbidden instantiations. Second, we showed that the elimination of

Multi-variable Distributed Backtracking with Sessions 29

Table 4 Impact of the number of variables per agent: 〈m,n, d, e〉 = 〈15, n, 3, 34.5n〉

n Multi-ABT Multi-AWC AFC DBSP F DBSP DBSF DBS

User time (s) 4.2 6.1 5.5 4.2 4.2 4.2 4.2
CPU time (s) 3.87 0.52 0.11 3.96 3.79 3.85 3.76

1 Max CPU time (s) 0.73 0.08 0.03 0.62 0.6 0.6 0.58
Messages (·103) 20.3 3.8 0.6 20.5 19.4 19.8 19.1

NCCC (·103) 275 158 4 34 33 34 31

User time (s) 4.3 27.3 14.7 5.1 5.3 5.3 5.4
CPU time (s) 2.85 40.03 4.75 3.17 3.05 3.41 3.72

3 Max CPU time (s) 0.50 7.9 1.9 0.49 0.49 0.54 0.69
Messages (·103) 12.8 18.8 2.5 14.9 14.2 16.2 18.2

NCCC (·103) 2,160 207,552 1,156 56 54 61 71

User time (s) 12.2 91.9 252.0 41.3 41.7 90.4 12.1
CPU time (s) 29.9 85.6 230.3 71.7 103.3 217.6 21.4

5 Max CPU time (s) 5.13 23.32 118.43 27.23 16.68 54.81 2.76
Messages (·103) 27.5 13.3 2.2 235.9 444.4 715.9 85.5

NCCC (·103) 73,429 596,799 86,542 3,629 6,248 11,333 1,034

User time (s) 219.5 28.4 OoM 37.9 64.5 42.7 29.5
CPU time (s) 821.4 135.1 90.5 173.1 111.1 69.8

7 Max CPU time (s) 127.84 28.45 14.94 25.97 20.65 10.5
Messages (·103) 206.8 13.3 219.2 443.2 388.3 178.8

NCCC (·103) 1,894,556 859 6,898 16,626 17,364 11,149

User time (s) 343.4 OoM 88.8 66.7 17.3 126.9
CPU time (s) 1,278.6 253.7 169.0 39.6 176.5

9 Max CPU time (s) 198.81 45.63 34.26 5.91 80.7
Messages (·103) 274.9 522.5 528.2 98.2 750.6

NCCC (·103) 3,473,200 70,815 76,784 10,218 111,461

User time (s) 366.8 109.5 58.3 24.8 76.8
CPU time (s) 1,326.8 313.6 146.6 38.5 211.1

11 Max CPU time (s) 224.6 67.21 25.14 7.04 37.14
Messages (·103) 256.2 404.2 216.8 47.3 276.1

NCCC (·103) 3,869,578 196,206 74,529 19,890 104,356

User time (s) 463.7 169.3 144.4 195.1 136.7
CPU time (s) 1,615.5 310.7 216.6 370.9 142.9

13 Max CPU time (s) 268.26 63.3 43.34 84.24 31.3
Messages (·103) 275.3 148.1 87.3 184.3 52.3

NCCC (·103) 4,870,692 204,926 135,128 270,188 87,562

obsolete forbidden instantiations does not change this property. Third, we proved that
the context of multiple variables per agent does not modify the completeness.

Various filters make it possible to significantly reduce the total number of ex-
changed messages while maintaining the completeness of our algorithm. The ex-
changed solution for every agent was optimized so that a given agent did not receive
information that did not pertain to it. The search for consistent local solutions received
from the highest priority agent was improved. Agents do not iteratively compute ev-
ery solution of their local CSP when they close a session, but they use a method that
makes it possible to avoid testing the solutions with the same interface variable char-

30 René Mandiau et al.

acteristics. In addition, the origin of every inconsistent local solution is saved to avoid
useless processing.

The results of our experiments were reported in this paper. DBS was compared not
only with other multi-variable algorithms per agent (i.e., Multi-ABT, Multi-AWC and
AFC), but also with the special case of one variable per agent. Our results have shown
that DBS has behavior that is good for solving distributed multi-variable problems. In
particular, it is not as memory-consuming as alternative DisCSP algorithms, and has
a reasonably efficient w.r.t. computation time.

Experiments on a variety of problems will provide better insight on the limita-
tions of DBS. As with most multi-variable algorithms, the need to store numerous
local solutions for large, under-constrained problems will undoubtedly be problem-
atic. We think that PINs are an interesting first step to solving this problem. Other
steps, such as optimizing data structures and lazy computations of local solutions,
are still required.

The comparative study we conducted in this paper should be applied to other al-
gorithms, such as APO [24, 40], which may be well-suited to handling multi-variable
problems. Moreover, another dynamic priority-related perspective for our approach
may improve global performance. Research on DisCSP shows that considerable per-
formance enhancements can be obtained by using dynamic priority for agents and ap-
propriate heuristics [10, 44, 70]. Finally, an interesting improvement for DBS would
involve investigating DCOP problems (i.e., a DisCSP with a function to optimize)
and seeking the optimal solution (instead of just one solution) [23, 25, 39, 48]. Exist-
ing studies have often examined a single-variable case, and generalizing the results
to multi-variable contexts may also be a new challenge.

Acknowledgements This research was partially financed by the French Ministry of National Education,
Research and Technology, The Nord/Pas-de-Calais Region, the French National Center of Scientific Re-
search (CNRS) and the International Campus on Safety and Intermodality in Transportation.

Bibliography

1. Abril M, Salido M, Barber F (2010) No-good FC for solving partitionable con-
straint satisfaction problems. Journal of Intelligent Manufacturing 21(1):101–
110

2. Armstrong A, Durfee E (1997) Dynamic prioritization of complex agents in dis-
tributed constraint satisfaction problems. In: Pollack M (ed) Proceedings of 15th
International joint Conference on Artificial Intelligence (IJCAI), Morgan Kauf-
man, Nagoya, Japan, pp 620–625

3. Belaissaoui M, Bouyakhf E (2003) Optimal distributed intelligent backtracking.
Techniques et Sciences Informatiques (TSI) 22:303–306

4. Bellifemine F, Giovani C, Tiziana T, Rimassa G (2000) Jade programmer’s guide.
Tech. rep., Telecom Italia

5. Benelallam I, Belaissaoui M, Ezzahir R, Bouyakhf E (2008) Dynamic branch-
and-bound distribué. In: quatrièmes Journées Francophones de Programmation
par Contraintes (JFPC), Nantes, France

Multi-variable Distributed Backtracking with Sessions 31

6. Bessière C, Maestre A, Meseguer P (2001) Distributed dynamic backtracking.
In: Silaghi M (ed) Workshop on Distributed Constraint Reasoning, held at Inter-
national Joint Conference on Artificial Intelligence (IJCAI), Seattle, Washington
(USA), pp 9–16

7. Bessière C, Maestre A, Brito I, Meseguer P (2005) Asynchronous backtracking
without adding links: A new member in the abt family. Artificial Intelligence
161(1-2):7–24

8. Bessière C, Katsirelos G, Narodytska N, Walsh T (2009) Circuit complexity and
decompositions of global constraints. In: Boutilier C (ed) Proceedings of the
21st International Joint Conference on Artificial Intelligence (IJCAI), Pasadena,
California (USA), pp 419–424

9. Brito I, Herrero F, Meseguer P (2004) On the evaluation of DisCSP algorithms.
In: Modi PJ (ed) Fifth International Workshop on Distributed Constraint Reason-
ing (DCR), held at 10th International Conference on Principles and Practice of
Constraint Programming (CP), Toronto, Canada, pp 438–445

10. Brito I, Meisels A, Meseguer P, Zivan R (2009) Distributed constraint satisfaction
with partially known constraints. Constraints 14(2):199–234

11. Cheeseman P, Kanefsky B, Taylor W (1991) Where the really hard problems are.
In: Mylopoulos J, Reiter R (eds) Proceedings of 12th International Joint Confer-
ence on Artificial Intelligence (IJCAI), Morgan Kaufman, Sydney, Australia, pp
331–337

12. Clair G, Kaddoum E, Gleizes MP, Picard G (2008) Self-regulation in self-
organising multi-agent systems for adaptive and intelligent manufacturing con-
trol. In: Bruechner SA, Robertson P, Bellur U (eds) 2nd IEEE International Con-
ference on Self-Adaptive and Self-Organizing Systems (SASO), IEEE Computer
Society, Venice, Italy, pp 107–116

13. Dechter R (1990) On the expresiveness of networks with hidden variables. In:
Shrobe HE, Dietterich TG, Swartout WR (eds) Proceedings of the 8th National
Conference on Artificial Intelligence (AAAI), Boston, Massachusetts, pp 556–
562

14. Dechter R, Pearl J (1989) Tree clustering for constraint networks. Artficial Intel-
ligence 38(3):353–366

15. Di Marzo Serugendo G, Gleizes MP, Karageorgos A (2006) Self-organisation
and emergence in MAS: An overview. Informatica (Slovenia) 30(1):45–54

16. Doniec A, Piechowiak S, Mandiau R (2005) A DisCSP solving algorithm based
on sessions. In: Russell I, Markov Z (eds) Proceedings of the 18th International
Florida Artificial Intelligence Research Society Conference (FLAIRS), AAAI
Press, Clearwater Beach, Florida (USA), pp 666–670

17. Doniec A, Espié S, Mandiau R, Piechowiak S (2006) Non-normative behaviour
in multi-agent system: Some experiments in traffic simulation. In: Proceedings
of IEEE/WIC/ACM International Conference on Intelligent Agent Technology
(IAT), IEEE Computer Society, Hong Kong, China, pp 30–36

18. Doniec A, Mandiau R, Piechowiak S, Espie S (2008) Anticipation based on con-
straint processing in a multi-agent context. Journal of Autonomous Agents and
Multi-Agent Systems (JAAMAS) 17:339–361

32 René Mandiau et al.

19. Ezzahir R (2008) Traitement des problèmes de satisfaction et d’optimisation de
contraintes distribués. PhD thesis, Université Mohammed V - Agdal, Maroc

20. Ezzahir R, Bessière C, Benelallam I, Bouyakhf E, Belaissaoui M (2008) Dy-
namic backtracking for distributed constraint optimization. In: Ghallab M, Spy-
ropoulos C, Fakotakis N, Avouris N (eds) Proceedings of the 18th European
Conference on Artificial Intelligence, IOS Press, Patras, Greece, Frontiers in Ar-
tificial Intelligence and Applications, vol 178, pp 901–902

21. Ezzahir R, Bessière C, Wahbi M, Benelallam I, Bouyakhf EH (2009) Asyn-
chronous inter-level forward-checking for DisCSPs. In: Gent IP (ed) Proceedings
of the 15th International Conference on Principles and Practice of Constraints
Programming (CP), Springer, Lisbon, Portugal, vol 5732, pp 304–318

22. Felfernig A, Friedrich G, Jannach D, Zanker M (2001) Towards distributed con-
figuration. In: Baader F, Brewka G, Eiter T (eds) KI 2001: Advances in Artificial
Intelligence, Lecture Notes in Computer Science, vol 2174, Springer Berlin Hei-
delberg, pp 198–212

23. Gershman A, Meisels A, Zivan R (2006) Asynchronous forward-bounding for
distributed constraints optimization. In: Brewka G, Coradeschi S, Perini A,
Traverso P (eds) Proceedings of the 17th European Conference on Artificial In-
telligence (ECAI), IOS Press, Riva del Garda, Italy, Frontiers in Artificial Intel-
ligence and Applications, vol 141, pp 103–107

24. Grinshpoun T, Meisels A (2008) Completeness and performance of the APO
algorithm. Journal of Artificial Intelligence Research (JAIR) 33:223–258

25. Grinshpoun T, Grubshtein A, Zivan R, Netzer A, Meisels A (2013) Asymmetric
distributed constraint optimization problems. Journal of Artificial Intelligence
Research (JAIR) 47:613–647

26. Günay A, Yolum P (2013) Constraint satisfaction as a tool for modeling
and checking feasibility of multiagent commitments. Applied Intelligence
39(3):489–509

27. Hamadi Y (1999) Traitement des problèmes de satisfaction de contraintes dis-
tribués. PhD thesis, Université de Montpellier II, France

28. Hamadi Y, Bessière C, Quinqueton J (1998) Backtracking in distributed con-
straint networks. In: Prade H (ed) 13th European Conference on Artificial Intelli-
gence (ECAI), John Wiley & Sons, Ltd, Brighton, United Kingdom, pp 219–223

29. Haralick RM, Elliott GL (1980) Increasing tree search efficiency for constraint
satisfaction problems. Artificial Intelligence 14(3):263–313

30. Hassine AB, Ho TB, Ito T (2006) Meeting scheduling solver enhancement with
local consistency reinforcement. Applied Intelligence 24(2):143–154

31. Hirayama K, Yokoo M (2000) The effect of nogood learning in distributed con-
straint satisfaction. In: Chen W (ed) Proceedings of the 20th International Con-
ference on Distributed Computing Systems (ICDCS), IEEE Computer Society,
Taipei, Taiwan, pp 169–177

32. Hirayama K, Yokoo M, Sycara K (2000) The phase transition in distributed con-
straint satisfaction problems: First results. In: Dechter R (ed) Proceedings of 6th
International Conference on Principles and Practice of Constraint Programming
(CP), Springer, Singapore, Lecture Notes in Computer Science, vol 1894, pp
515–519

Multi-variable Distributed Backtracking with Sessions 33

33. Hirayama K, Yokoo M, Sycara K (2004) An easy-hard-easy cost profile in dis-
tributed constraint satisfaction. Information Processing Society of Japan (IPSJ)
journal 45(9):2217–2225

34. Van der Hoek W, Witteveen C, Wooldridge M (2011) Decomposing constraint
systems: Equivalences and computational properties. In: Sonenberg L, Stone P,
Turner K, Yolum P (eds) Proceedings of 10th Int. Conf. on Autonomous Agents
and Multiagent Systems (AAMAS), IFAAMAS, Taipei, Taiwan, pp 149–156

35. Jannach D, Zanker M (2013) Modeling and solving distributed configuration
problems: A CSP-based approach. IEEE Transactions on Knowledge and Data
Engineering 25(3):603–618

36. Jennings N (1996) Coordination techniques for distributed artificial intelligence.
In: O’Hare G, Jennings N (eds) Foundations of Distributed Artificial Intelligence,
Wiley, pp 187–210

37. Junker U (2004) QuickXplain: Preferred explanations and relaxations for over-
constrained problems. In: McGuinness DL, Ferguson G (eds) Proceedings of the
Nineteenth National Conference on Artificial Intelligence (AAAI) - Sixteenth
Conference on Innovative Applications of Artificial Intelligence (IAAI), AAAI
Press / The MIT Press, San Jose, California (USA), pp 167–172

38. Karagiannis P, Vouros G, Stergiou K, Samaras N (2012) Overlay networks for
task allocation and coordination in large-scale networks of cooperative agents.
Autonomous Agents and Multi-Agent Systems 24(1):26–68

39. Mailler R, Lesser V (2004) Solving Distributed Constraint Optimization Prob-
lems Using Cooperative Mediation. In: Proceedings of Third International Joint
Conference on Autonomous Agents and Multiagent Systems (AAMAS), IEEE
Computer Society, New York, NY (USA), pp 438–445

40. Mailler R, Lesser V (2004) Using cooperative mediation to solve distributed con-
straint satisfaction problems. In: Proceedings of Third International Joint Confer-
ence on Autonomous Agents and Multi-Agent Systems (AAMAS), IEEE Com-
puter Society Press, New-York, NY (USA), vol 1, pp 446–453

41. Malone T (1988) What is coordination theory? working paper 2051-88, Cam-
bridge, MA: MIT Sloan School of Management

42. Mammen DL, Lesser VR (1998) Problem structure and subproblem sharing in
multi-agent systems. In: Demazeau Y (ed) Proceedings of the Third International
Conference on Multiagent Systems (ICMAS), IEEE Computer Society, Paris,
France, pp 174–181

43. Meisels A, Zivan R (2003) Asynchronous forward-checking on DisCSPs. In:
Zhang W (ed) Workshop on the Fourth Distributed Constraint Reasoning (DCR),
held at 18th International Joint Conference on Artificial Intelligence, IOS Press,
Acapulco, Mexico, Frontiers in Artificial Intelligence

44. Meisels A, Zivan R (2007) Asynchronous forward-checking for DisCSPs. Con-
straints 12(1):131 – 150

45. Meisels A, Kaplansky E, Razgon I, Zivan R (2002) Comparing performance of
distributed constraints processing algorithms. In: Yokoo M (ed) 3rd Workshop
on Distributed Constraint Reasoning, Held at 1st International Conference on
Autonomous and Multi-Agent Systems (AAMAS), Bologna, Italy

34 René Mandiau et al.

46. Minton S, Johnston MD, Philips AB, Laird P (1992) Minimizing conflicts: a
heuristic repair method for constraint satisfaction and scheduling problems. Ar-
tificial Intelligence 58(1-3):161–205

47. MirHassani S, Habibi F (2013) Solution approaches to the course timetabling
problem. Artificial Intelligence Review 39(2):133–149

48. Modi PJ, Shen WM, Tambe M, Yokoo M (2005) Adopt: asynchronous dis-
tributed constraint optimization with quality guarantees. Artificial Intelligence
161(1-2):149–180

49. Monier P, Piechowiak S, Mandiau R (2009) A complete algorithm for DisCSP:
Distributed backtracking with sessions (dbs). In: Jennings N, Rogers A, Aguilar
JR, Farinelli A, Ramchurn S (eds) Second International Workshop on Optimi-
sation in Multi-Agent Systems (OptMas), Held at 8th Joint Conference on Au-
tonomous and Multi-Agent Systems (AAMAS), Budapest, Hungary, pp 39–46

50. Monier P, Belaissaoui M, Piechowiak S, Mandiau R (2010) Résolution de CSP
distribués avec problèmes locaux complexes. In: Cordier MO, Jolion JM (eds)
Actes du 17ème congrès francophone AFRIF-AFIA (RFIA), Caen, France, pp
694–701

51. Monier P, Doniec A, Piechowiak S, Mandiau R (2010) Metrics for the evaluation
of DisCSP: Some experiments of multi-robot exploration. In: Huang JX, Ghor-
bani AA, Hacid MS, Yamaguchi T (eds) Proceedings of the IEEE/WIC/ACM
International Conference on Web Intelligence and Intelligent Agent Technology
(WI-IAT), IEEE Computer Society Press, Toronto, Canada, pp 370–373

52. Monier P, Doniec A, Piechowiak S, Mandiau R (2011) Comparison of DCSP al-
gorithms: A case study for multi-agent exploration. In: Demazeau Y, Pechoucek
M, Corchado JM, Pérez JB (eds) Proceedings of the 9th International Confer-
ence on Practical Applications of Agents and Multiagent Systems (PAAMS),
Springer, Salamanca, Spain, Advances in Intelligent and Soft Computing, vol 88,
pp 231–236

53. Mouhoub M, Sukpan A (2012) Managing dynamic CSPs with preferences. Ap-
plied Intelligence 37(3):446–462

54. Muscalagiu I (2005) The effect of flag introduction on the explosion of nogood
values in the case of ABT family techniques. In: Pechoucek M, Petta P, Varga LZ
(eds) Multi-Agent Systems and Applications IV, 4th International Central and
Eastern European Conference on Multi-Agent Systems (CEEMAS), Springer,
Budapest, Hungary, Lecture Notes in Computer Science, vol 3690, pp 286–295

55. Nguyen V, Sam-Haroud D, Faltings B (2004) Dynamic distributed backjumping.
In: Workshop on the Fifth Distributed Constraint Reasoning, in Tenth Interna-
tional Conference on Principles and Practice of Constraints Programming (CP),
Toronto, CA, pp 51–65

56. Pal A, Ritu RT, Shukla A (2013) Communication constraints multi-agent terri-
tory exploration task. Applied Intelligence 38(3):357–383

57. Picard G, Glize P (2006) Model and analysis of local decision based on co-
operative self-organization for problem solving. Multiagent and Grid Systems
2(3):253–265

58. Silaghi MC, Sam-Haroud D, Faltings B (2000) Asynchronous search with ag-
gregations. In: Kautz HA, Porter BW (eds) Proceedings of the 17th National

Multi-variable Distributed Backtracking with Sessions 35

Conference on Artificial Intelligence and 12th Conference on Innovative Appli-
cations of Artificial Intelligence, AAAI Press/MIT Press, Austin, Texas (USA),
pp 917–922

59. Silaghi MC, Sam-Haroud D, Faltings B (2000) Maintaining hierarchically dis-
tributed consistency. In: Silaghi MC (ed) International Workshop on Distributed
Constraint Satisfaction, Held at 7th International Conference on Principles and
Practice of Constraint Programming (CP), Singapore

60. Stansbury R, Agah A (2012) A robot decision making framework using con-
straint programming. Artificial Intelligence Review 38(1):67–83

61. Stefanovitch N, Farinelli A, Rogers A, Jennings N (2010) Efficient multi-agent
coordination using resource-aware junction trees. In: van der Hoek W, Kaminka
GA, Lespérance Y, Luck M, Sen S (eds) Proceedings of 9th Int. Conf. on
Autonomous Agents and Multiagent Systems (AAMAS), IFAAMAS, Toronto,
Canada, pp 1413–1414

62. Stefanovitch N, Farinelli A, Rogers A, Jennings N (2011) Resource-aware junc-
tion trees for efficient multi-agent coordination. In: Sonenberg L, Stone P, Turner
K, Yolum P (eds) Proceedings of 10th Int. Conf. on Autonomous Agents and
Multiagent Systems (AAMAS), IFAAMAS, Taipei, Taiwan, pp 363–370

63. Tsuruta T, Shintani T (2000) Scheduling meetings using distributed valued con-
straint satisfaction algorithm. In: Horn W (ed) Proceedings of the 14th European
Conference on Artificial Intelligence (ECAI), IOS Press, Berlin, Germany, pp
383–387

64. Vion J (2007) CSP4J: a Black-Box CSP Solving API for Java. In: MRC van Don-
gen CL, Roussel O (eds) Proceedings of the Second International CSP Solver
Competition, Held in conjunction with the 12th Int. Conf. on Principle and Prac-
tice of Constraint Programming (CP), Nantes, France, pp 75–88

65. Yokoo M (1995) Asynchronous weak-commitment search for solving distributed
constraint satisfaction problem. In: Lecture Notes In Computer Science, vol 976,
pp 88–102

66. Yokoo M (2001) Distributed Constraint Satisfaction: Foundations of Cooperation
in Multi-agent Systems. Springer Verlag

67. Yokoo M, Hirayama K (1996) Distributed breakout algorithm for solving dis-
tributed constraint satisfaction problems. In: Tokoro M (ed) Proceedings of the
Second International Conference on Multiagent Systems (ICMAS), AAAI Press,
Kyoto, Japan, pp 401–408

68. Yokoo M, Hirayama K (1998) Distributed constraint satisfaction algorithms for
complex local problems. In: Demazeau Y (ed) Proceedings of the Third Inter-
national Conference on Multiagent Systems (ICMAS), IEEE Computer Society,
Paris, France, pp 372–379

69. Yokoo M, Hirayama K (2000) Algorithms for distributed constraint satisfaction:
A review. Autonomous Agents and Multi-Agent Systems 3(2):185–207

70. Zivan R, Meisels A (2006) Dynamic ordering for asynchronous backtracking on
discsps. Constraints 11:179 –197

