Conservative Dual Consistency

C r L

cenire de recherche en nformatique de lens

Stephane Cardon, Christophe Lecoutre and Julien Vion

{cardon, lecoutre,vion}@cril.univ—-artois.fr

‘ Introduction |

e Consistencies are properties of Constraint Networks
(CNs) that can be exploited in order to make inferences
and make CNs much easier to solve.

e We propose a new consistency called Dual Consistency
(DC) and relate it to Path Consistency (PC).

e We show that Conservative DC (CDGC, i.e. DC with only
relations associated with the constraints of the network

considered) is more powerful, in terms of filtering, than
Conservative PC (CPC).

e Following the approach of Mac Gregor [1], we introduce
an algorithm to establish (strong) CDC with a very low
worst-case space complexity.

e The experiments we have conducted show that, on many
series of CSP instances, CDC is largely faster than CPC
(up to more than one order of magnitude).

‘ Constraint Networks and Consistencies |

Definition 1. A Constraint Network is a pair (£, ¢’) where:

e 2 Is a finite set of variables. Their associated domains
dom(X), represents the set of values allowed for X.

e ¢ is a finite set of constraints. Each constraint C' € ¥
describes the set of allowed tuples rel(C) for variables
sep(C).

We restrict our attention to binary networks and consider
that the same scope cannot be shared by two distinct con-
straints.

Notations

o X, apair (X,a)with X € 2 and a € dom(X)

e n: the number of variables

e ¢. the number of constraints

e d: the largest domain size

¢ )\: the number of allowed tuples over all constraints of P
e K. the number of 3-cliques in P.

e D: the density of the binary CN (e/(5))

The Constraint Satisfaction Problem (CSP) is the NP-
complete task of determining whether a given constraint
network is satisfiable, i.e. admits at least one assignment
of values to all the variables that satisfies all constraints.

Consistencies are enforced to on a CN to identify and re-
moving some inconsistent values or pairs of values. From
now on, we will consider a binary constraint network P =
(Z,6).

Definition 2. A value X, of P is arc-consistent (AC) iff
VC € ¢ | X €sep(C),3A( Xy, Yy) €rel(C) | b€ dom(Y).
ACN Pis AC iff VX4 X € (X)Aa € dom(X), X, is AC.

Definition 3. A pair of values (X, Y;) (with X #Y) is

e path-consistent (PC) iff V2 ¢ 2 | Z ¢ {X,Y}
3{C,C" € €% | scp(C) = {X, ZY Ascp(C!) = {Y, Z}ATc €
dom(Z) | (Xq4, Z¢) € rel(C) A (Y}, Z¢) € rel(C)

e conservative path-consistent (CPC) iff either AC ¢
€ | scp(C)={X,Y}or (X, Y;) is PC.

Definition 4. P is PC (resp. CPC) iff V{X,, Y} | {X, Y} €
Z?NX £Y,{X,,Y;} is PC (resp. CPC).

For all considered consistencies ¢ and any CN P, there ex-
ists a greatest subnetwork of P which is ¢-consistent, de-
noted by ¢(P), and it is possible to compute it in polynomial
time. For example, AC(P) is such that all values of P that
are not arc-consistent have been removed. If any variable
in ¢(P) has an empty domain, P is unsatisfiable (¢(P) = 1).
P|x—, denotes the network obtained from P by restricting
the domain of X to the singleton {a}.

‘ Qualitative Study |

Notation ¢ > : ¢ Is strictly stronger than ) (whenever
¢ holds on a CN P, v also holds on P and there exists at
least one CN P such that ¢ holds on P but not v.)

n the following figures, edges correspond to allowed tuples.

Figure 1: A network (no constraint binds X with Z and'Y
with T') that is CDC but not PC. For example, (X, Z}) Is not
PC.

Theorem 1. DC = PC |

Figure 2: A network (no constraint binds X with Z and'Y
with T') that is CPC but not CDC. For example, (X, Ty) is
not CDC as AC(P|x—,) = L.

Theorem 2. PC = CDC. |

‘ Algorithm sCDC-1 |

The following algorithm enforces sCDC, i.e. ensures that
the resulting network is AC and CDC.

Algorithm: sCDC-1(P = (2,%) : CN)
P — AC(P, Z');
marker «— X «— first(Z);
repeat
if check(X) then
P — AC(P,{X});

L marker «— X;
X «— next-modulo( X, Z);
until X # marker ;

Algorithm: check(P : CN, X : Variable) : Boolean

modi fied <— false
foreach o € dom”'(X) do
P"— AC(P|x=q {X})
if P’ = 1 then
remove a from dom®’ (X)

modi fied < true
else

foreach C € € | X € scp(C) do
let Y be the second variable in scp(C)

foreach b € dom” (V) | b ¢ dom? (V) do

L remove (X, Y;) from rel?(C)
modi fied < true

return mod: fied

Definition 5. A pair (X, Y;) of values of P s.t. X # Y is:

e dual-consistent (DC) iff Y, € AC(P|x—,) and X, €
AC(Ply=p).

e conservative dual-consistent (CDC) iff either AC ¢
% | scp(C)=1{X,Y}or (XY is DC.

Definition 6. P is DC (resp. CDC) iff V{X,, Y} | {X, Y} €
22NX £Y,{X,,Y;} is DC (resp. CDC).
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Theorem 3. CDC = CPC. |

Theorem 4. The worst-case time complexity of sCDC-1 is

O()\end’) and its worst-case space complexity is O(ed?).

Note that O(\end?) C O(e*nd).

Corollary 1. Applied to a sCDC network, the worst-case
time complexity of SCDC-1 is O(end?).

Corollary 2. The best-case time complexity of sCDC-1 is
O(ed?).

‘ Experiments |

Experiments are performed on various set of instances from
the second CSP solvers competition[2]. In the following, A
gives a measurement of the filtering done by the different
algorithm: the smallest X is, the smallest the resulting CN is
(and thus, the filtering provided powerful is).

Experimental results on various series of In-
stances

AC3rm | SAC-SDS |sCPC8 / sCPC2001  sCDC-1
Langford (4 instances)

cpu 0.22 0.46 4.02/4.94 0.52
A 105,854 105,769 75.727| 75,727

blackhole-4-13 (7 instances) (K = 92,769 ; D = 20%)

cpu 1.26 19.39 140.54 / — 46.91

A 18,206,320 8,206, 320 8,206,320 | 7,702,906
(40, 180,84, 0.9) (20 instances) (K =12 ; D = 10%)

cpu 0.71 10.57 2.28 1 2.02 17.42
A 272,253 244,887 244,272 210,874

(40,8, 753,0.1) (20 instances) (K = 8,860 ; D = 96%)

cpu 0.16 0.21 0.62/0.69 0.20
A 43,320 43, 320 43,318| 43,318

job-shop enddr1 (10 instances) (K = 600 ; D = 21%)

cpu 1.58 4.06 7.91/10.54 4.67

M\12,937,697 | 2,937,697
RLFAP scens (11 instances)
cpu 0.86 — 25.96 / — 3.47
M| 1,674,286 — 1,471,132 1, 469, 286

2,937,697 2,930,391

Experimental results on various single In-
stances

AC3rm | SAC-SDS | sCPC8/sCPC2001| sCDC-1
driverlogw-09 (K = 233,834 ; D = 8%)
cpu 1.60 48.42 33.84 / 36.52 10.83
mem 14 87 59/ 155 23
A 369,736 147,115 306, 573 18, 958
haystack-40 (K = 395,200 ; D = 2%)
cpu 9.64 — 580.48 / — 55.91
mem 19 — 209 / — 107
\| 48,670,518 _ 48,670,518 | 48, 670, 518
knights-50-5 (K = 10; D = 100%)
cpu 12.38 34.43 1759/ — 21.49
mem 5 163 29 [ — 19
A1 31,331, 580 0 0 0
pigeons-50 (K = 19,600 ; D = 100%)
cpu 1.38 2.8D 33.82 / 44.52 2.7
mem 2 12 9/636 5

Al 2,881,200 2,881,200
qcp-25-264-0 (K = 43,670 ; D = 5%)

2,881,200 2,881,200

Ccpu 2.28 6.08 8.15/10.49 2.08
mem 3 210 29 /215 21
A 77,234 77,234 76,937 76,937
gwh-25-235-0 (K = 35,700 ; D = 4.5%)
cpu 1.87 5.62 7.09/9.05 2.50
mem 7 183 26 /173 19
A 56, 721 56, 721 56, 380 56, 380
fapp01-200-4 (K = 247 ; D = 0.5%)
cpu 10.73 — 16.05/ 18.63 104.05

mem 15 — 22 [ 254 17

Al 3,612,163 — 3,317,135| 2,117,575

scen-11 (K = 13,775 ; D = 1.7%)
cpu 2.87 — 85.82 / 78.49 9.78
mem 5 — 22 [ 426 16
A 5,434,107 — 4,829,442 | 4,828,650

Impact of sCDC at preprocessing on MAC

Instance MAC |sCDC + MAC
) cpu 38.08 14.31
scen11-18|  des| 14.068 1,946
) cpu 259 225
scent1-f5 nodes | 1,327K 680K
) cpu | 2,338 1,725
scenl1-181 des|  12M 5, 8631
) cpu| 7,521 5,872
scenti-f2 nodes STM 21 M
) cpu | 17,409 13, 136
scenti-f nodes 93 M 5oM

(cpu in seconds, mem in MiB)

‘ Conclusion |

We have introduced a new consistency called Dual Con-
sistency (DC) and have focused on its conservative variant
CDC. It has been shown in particular that CDC is a relation
filtering consistency which is stronger than conservative PC
(CPC), and enforcing strong CDC (i.e. enforcing both CDC
and AC) can be done in a quite natural way (sCDC is also
stronger than sCPC and easier to obtain). The experimen-
tal results obtained from a wide range of problems clearly
show the practical interest of CPC, in particular on hard
dense problems.
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