
Conservative Dual Consistency
Stéphane Cardon, Christophe Lecoutre and Julien Vion

{cardon,lecoutre,vion}@cril.univ-artois.fr

Introduction

•Consistencies are properties of Constraint Networks
(CNs) that can be exploited in order to make inferences
and make CNs much easier to solve.

•We propose a new consistency called Dual Consistency
(DC) and relate it to Path Consistency (PC).

•We show that Conservative DC (CDC, i.e. DC with only
relations associated with the constraints of the network
considered) is more powerful, in terms of filtering, than
Conservative PC (CPC).

• Following the approach of Mac Gregor [1], we introduce
an algorithm to establish (strong) CDC with a very low
worst-case space complexity.

• The experiments we have conducted show that, on many
series of CSP instances, CDC is largely faster than CPC
(up to more than one order of magnitude).

Constraint Networks and Consistencies

Definition 1. A Constraint Network is a pair (X ,C) where:

•X is a finite set of variables. Their associated domains
dom(X), represents the set of values allowed for X.

• C is a finite set of constraints. Each constraint C ∈ C
describes the set of allowed tuples rel(C) for variables
scp(C).

We restrict our attention to binary networks and consider
that the same scope cannot be shared by two distinct con-
straints.

Notations

•Xa: a pair (X, a) with X ∈X and a ∈ dom(X)

• n: the number of variables

• e: the number of constraints

• d: the largest domain size

• λ: the number of allowed tuples over all constraints of P

•K: the number of 3-cliques in P .

•D: the density of the binary CN (e/
(n

2

)
)

The Constraint Satisfaction Problem (CSP) is the NP-
complete task of determining whether a given constraint
network is satisfiable, i.e. admits at least one assignment
of values to all the variables that satisfies all constraints.
Consistencies are enforced to on a CN to identify and re-
moving some inconsistent values or pairs of values. From
now on, we will consider a binary constraint network P =
(X ,C).

Definition 2. A value Xa of P is arc-consistent (AC) iff
∀C ∈ C | X ∈ scp(C),∃(Xa, Yb) ∈ rel(C) | b ∈ dom(Y).
A CN P is AC iff ∀Xa|X ∈ (X) ∧ a ∈ dom(X), Xa is AC.

Definition 3. A pair of values (Xa, Yb) (with X 6= Y) is

• path-consistent (PC) iff ∀Z ∈ X | Z 6∈ {X, Y }
∃{C,C ′} ∈ C 2 | scp(C) = {X,Z}∧ scp(C ′) = {Y, Z}∧∃c ∈
dom(Z) | (Xa, Zc) ∈ rel(C) ∧ (Yb, Zc) ∈ rel(C ′)

• conservative path-consistent (CPC) iff either @C ∈
C | scp(C) = {X, Y } or (Xa, Yb) is PC.

Definition 4. P is PC (resp. CPC) iff ∀{Xa, Yb} | {X, Y } ∈
X 2 ∧X 6= Y, {Xa, Yb} is PC (resp. CPC).

For all considered consistencies φ and any CN P , there ex-
ists a greatest subnetwork of P which is φ-consistent, de-
noted by φ(P), and it is possible to compute it in polynomial
time. For example, AC(P) is such that all values of P that
are not arc-consistent have been removed. If any variable
in φ(P) has an empty domain, P is unsatisfiable (φ(P) = ⊥).
P |X=a denotes the network obtained from P by restricting
the domain of X to the singleton {a}.
Definition 5. A pair (Xa, Yb) of values of P s.t. X 6= Y is:
• dual-consistent (DC) iff Yb ∈ AC(P |X=a) and Xa ∈

AC(P |Y =b).
• conservative dual-consistent (CDC) iff either @C ∈

C | scp(C) = {X, Y } or (Xa, Yb) is DC.

Definition 6. P is DC (resp. CDC) iff ∀{Xa, Yb} | {X, Y } ∈
X 2 ∧X 6= Y, {Xa, Yb} is DC (resp. CDC).

Qualitative Study

Notation φ � ψ: φ is strictly stronger than ψ (whenever
φ holds on a CN P , ψ also holds on P and there exists at
least one CN P such that φ holds on P but not ψ.)

Theorem 1. DC = PC

In the following figures, edges correspond to allowed tuples.

X

a

b Y

a

b

Z

a
bT

a
b

Figure 1: A network (no constraint binds X with Z and Y
with T) that is CDC but not PC. For example, (Xa, Zb) is not
PC.

Theorem 2. PC � CDC.

X

a

b Y

a

b

Z

a
bT

a
b

Figure 2: A network (no constraint binds X with Z and Y
with T) that is CPC but not CDC. For example, (Xa, Ta) is
not CDC as AC(P |X=a) = ⊥.

Theorem 3. CDC � CPC.

Algorithm sCDC-1

The following algorithm enforces sCDC, i.e. ensures that
the resulting network is AC and CDC.

Algorithm: sCDC-1(P = (X ,C) : CN)
P ← AC(P,X);
marker ← X ← first(X);
repeat

if check(X) then
P ← AC(P, {X});
marker ← X;

X ← next-modulo(X,X);
until X 6= marker ;

Algorithm: check(P : CN, X : Variable) : Boolean
modified← false
foreach a ∈ domP (X) do

P ′← AC(P |X=a, {X})
if P ′ = ⊥ then

remove a from domP (X)
modified← true

else
foreach C ∈ C | X ∈ scp(C) do

let Y be the second variable in scp(C)

foreach b ∈ domP (Y) | b /∈ domP ′(Y) do
remove (Xa, Yb) from relP (C)
modified← true

return modified

Theorem 4. The worst-case time complexity of sCDC-1 is
O(λend3) and its worst-case space complexity is O(ed2).

Note that O(λend3) ⊆ O(e2nd5).
Corollary 1. Applied to a sCDC network, the worst-case
time complexity of sCDC-1 is O(end3).
Corollary 2. The best-case time complexity of sCDC-1 is
O(ed2).

Experiments

Experiments are performed on various set of instances from
the second CSP solvers competition[2]. In the following, λ
gives a measurement of the filtering done by the different
algorithm: the smallest λ is, the smallest the resulting CN is
(and thus, the filtering provided powerful is).

Experimental results on various series of in-
stances

AC3rm SAC-SDS sCPC8 / sCPC2001 sCDC-1
Langford (4 instances)
cpu 0.22 0.46 4.02 / 4.94 0.52
λ 105, 854 105, 769 75, 727 75, 727

blackhole-4-13 (7 instances) (K = 92, 769 ; D = 20%)
cpu 1.26 19.39 140.54 / − 46.91
λ 8, 206, 320 8, 206, 320 8, 206, 320 7, 702, 906
〈40, 180, 84, 0.9〉 (20 instances) (K = 12 ; D = 10%)
cpu 0.71 10.57 2.28 / 2.02 17.42
λ 272, 253 244, 887 244, 272 210, 874
〈40, 8, 753, 0.1〉 (20 instances) (K = 8, 860 ; D = 96%)
cpu 0.16 0.21 0.62 / 0.69 0.20
λ 43, 320 43, 320 43, 318 43, 318

job-shop enddr1 (10 instances) (K = 600 ; D = 21%)
cpu 1.58 4.06 7.91 / 10.54 4.67
λ 2, 937, 697 2, 937, 697 2, 937, 697 2, 930, 391

RLFAP scens (11 instances)
cpu 0.86 − 25.96 / − 3.47
λ 1, 674, 286 − 1, 471, 132 1, 469, 286

Experimental results on various single in-
stances

AC3rm SAC-SDS sCPC8 / sCPC2001 sCDC-1
driverlogw-09 (K = 233, 834 ; D = 8%)
cpu 1.60 48.42 33.84 / 36.52 10.83

mem 14 87 59 / 155 23
λ 369, 736 147, 115 306, 573 18, 958

haystack-40 (K = 395, 200 ; D = 2%)
cpu 9.64 − 580.48 / − 55.91

mem 19 − 209 / − 107
λ 48, 670, 518 − 48, 670, 518 48, 670, 518

knights-50-5 (K = 10 ; D = 100%)
cpu 12.38 34.43 1759 / − 21.49

mem 5 163 29 / − 19
λ 31, 331, 580 0 0 0

pigeons-50 (K = 19, 600 ; D = 100%)
cpu 1.38 2.85 33.82 / 44.52 2.7

mem 2 12 9 / 636 5
λ 2, 881, 200 2, 881, 200 2, 881, 200 2, 881, 200

qcp-25-264-0 (K = 43, 670 ; D = 5%)
cpu 2.28 6.08 8.15 / 10.49 2.08

mem 8 210 29 / 215 21
λ 77, 234 77, 234 76, 937 76, 937

qwh-25-235-0 (K = 35, 700 ; D = 4.5%)
cpu 1.87 5.62 7.09 / 9.05 2.56

mem 7 183 26 / 173 19
λ 56, 721 56, 721 56, 380 56, 380

fapp01-200-4 (K = 247 ; D = 0.5%)
cpu 10.73 − 16.05 / 18.63 104.05

mem 15 − 22 / 254 17
λ 3, 612, 163 − 3, 317, 135 2, 117, 575

scen-11 (K = 13, 775 ; D = 1.7%)
cpu 2.87 − 85.82 / 78.49 9.78

mem 5 − 22 / 426 16
λ 5, 434, 107 − 4, 829, 442 4, 828, 650

Impact of sCDC at preprocessing on MAC
Instance MAC sCDC +MAC

scen11-f8 cpu 8.08 14.31
nodes 14, 068 4, 946

scen11-f5 cpu 259 225
nodes 1, 327K 680K

scen11-f3 cpu 2, 338 1, 725
nodes 12M 5, 863K

scen11-f2 cpu 7, 521 5, 872
nodes 37M 21M

scen11-f1 cpu 17, 409 13, 136
nodes 93M 55M

(cpu in seconds, mem in MiB)

Conclusion

We have introduced a new consistency called Dual Con-
sistency (DC) and have focused on its conservative variant
CDC. It has been shown in particular that CDC is a relation
filtering consistency which is stronger than conservative PC
(CPC), and enforcing strong CDC (i.e. enforcing both CDC
and AC) can be done in a quite natural way (sCDC is also
stronger than sCPC and easier to obtain). The experimen-
tal results obtained from a wide range of problems clearly
show the practical interest of CPC, in particular on hard
dense problems.

References

[1] J.J. McGregor. Relational consistency algorithms and
their application in finding subgraph and graph isomor-
phisms. Information Sciences, 19:229–250, 1979.

[2] M. van Dongen, C. Lecoutre, O. Roussel, R. Szy-
manek, F. Hemery, C. Jefferson, and R. Wal-
lace. Second International CSP Solvers Competition.
http://cpai.ucc.ie/06/Competition.html, 2006.

AAAI 2007, Vancouver, Canada

